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Abstract 
The facilitative glucose transport protein GLUT1 has important roles in positron emission tomography 
(PET) imaging of human diseases.  GLUT1 has widespread expression and catalyses the energy-

independent facilitated diffusion of glucose down its concentration gradient across red blood cell 

membranes, blood-brain and blood-tissue barriers and membranes of some oragnelles.  Import is 
usually the prevailing direction of transport for providing metabolic fuel, especially in proliferating 

cells.  PET imaging using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) measures the uptake of 

[18F]FDG into cells and tissues as a marker of glucose transport and glycolytic activity.  Diseases can 
alter glycolytic activity in localised regions of tissues or organs, which can be visualised using 

[18F]FDG PET.  Expression and/or activity levels of GLUT1 contribute to the pattern and intensity of 

[18F]FDG.  [18F]FDG PET imaging is used in diagnosing and monitoring a range of human diseases 
and in analysing their response to treatments.  Proliferating cancer cells display overexpression of 

GLUT1 and a vastly higher rate of glycolysis for satisfying their increased nutrient demands.  

Tumours therefore have significantly enhanced [18F]FDG uptake compared with normal cells, so 
[18F]FDG PET is routinely used in diagnosing and monitoring cancers.  [18F]FDG PET imaging of the 

brain allows identification of distinct patterns of hypometabolism and/or hypermetabolism associated 

with neurological disorders including Alzheimer’s disease, Parkinson’s disease, epilespsy, 
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schizophrenia, multiple sclerosis and cerebral ischemia.  Cardiovascular diseases, along with 

underlying conditions such as inflammation, sarcoidosis, atherosclerosis, and infections of implants 
and prosthetics are routinely assessed using [18F]FDG PET.  Diabetes alters the distribution of 

[18F]FDG, which can affect diagnosis of other diseases.  The effects of anti-diabetic drugs on glucose 

metabolism and activation of brown adipose tissue as a preventative measure or treatment for obesity 
and diabetes have been investigated using [18F]FDG PET.  GLUT1 itself is a potential therapeutic 

target for treatment of some diseases, which has also been investigated using [18F]FDG PET. 

Keywords: cancer; cardiovascular disease; diabetes; FDG-PET imaging; glucose metabolism; 

GLUT1; neurological disorders; positron emission tomography; radiochemistry; transport protein 
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1. Introduction 

1.1. GLUT facilitative transport proteins 

Glucose homeostasis in the human body is maintained by the GLUT or solute carrier 2 (SLC2) family 

of facilitative transport proteins, which are members of the sugar porter sub-family of the large and 

widespread Major Facilitator Superfamily (MFS) of secondary transport proteins [1,2,3].  GLUT 

proteins catalyse the energy-independent facilitated diffusion of hydrophilic glucose molecules and 

other substrates down their concentration gradient across hydrophobic cell membranes.  Import is 

usually the prevailing direction of transport in order to provide metabolic fuel, especially in 

proliferating cells (Figure 1A).  Fourteen GLUT isoforms (GLUT1-14) have been identified that are 

each comprised of ~ 500 amino acid residues.  These share a high sequence similarity (19-65% 

identity, 39-81% homology) [4] and a number of structural features including twelve putative 

transmembrane-spanning α-helices arranged in two distinct N- and C-terminal domains of six helices, 

cytoplasmic N- and C-terminal ends, a large intracellular loop between helices 6 and 7 and a single-site 

of N-linked glycosylation on one of the extracellular loops.  The different isoforms have different 

patterns of tissue-specific expression, cellular localisation, substrate specificity and kinetics, which can 

be altered under disease conditions.  Details and physiologies of the fourteen GLUT isoforms have 

been reviewed extensively [5-13]. 

 

1.2. Glucose transporter GLUT1 

GLUT1 was the first equilibrative glucose transporter to be identified, purified and cloned [14-17] and 

has become one of the most extensively studied of all membrane transport proteins.  Hexose and 

pentose sugars that adopt a pyranose conformation are the preferred substrates of GLUT1 [18], which 

recognises D-glucose in both its α- and β-pyranose forms with equal affinity [19], but it does not 

recognise L-glucose.  Some glucose analogues including 2-deoxy-D-glucose and 3-O-methyl-D-

glucose (Figure 1B) are transported by GLUT1 and have been used as tools in metabolic and kinetic 

transport experiments.  On entering the cell 2-deoxy-D-glucose is phosphorylated by hexokinase to 

give 2-deoxy-D-glucose-6-phosphate, which is not metabolised any further and is not transported by 

GLUT1 so it becomes trapped inside the cell [20], whilst 3-O-methyl-D-glucose is not phosphorylated 

by hexokinase [21].  When examined in Xenopus laevis oocytes, GLUT1 transports D-glucose with an 

apparent affinity (Kmapp value) of 3 mM, whilst values for transport of 2-deoxy-D-glucose and 3-O-

methyl-D-glucose have been measured at 5 mM and 17-26 mM, respectively, in the same system [22-

25].  In the erythrocyte membrane, the apparent Km value for glucose uptake has been measured at 

around 1.5 mM and when reconstituted in liposomes at 1-2 mM [26-28].  Other hexoses transported by 
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GLUT1 include galactose, mannose, and glucosamine and GLUT1 also transports the oxidized form of 

vitamin C, dehydroascorbic acid, in order to confer mitochondrial protection against oxidative injury 

[29].  The transport activity of GLUT1 is inhibited by a number of different compounds including 

cytochalasin B, forskolin, phloretin and other flavonoids, maltose and mercuric chloride, which all 

have low micromolar affinities [30-34] and these have been used in a range of experimental studies of 

GLUT1 sugar transport and function. 
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Figure 1. The human facilitative glucose transport protein GLUT1. A. Crystal structure of GLUT1 illustrated in a cell 

membrane catalysing the inward movement of D-glucose down its concentration gradient.  The transported glucose is 

metabolised by the glycolytic pathway, the first step being conversion to glucose-6-phosphate catalysed by hexokinase.  

The structure of GLUT1 is coloured with the N-terminus in blue and the C-terminus in red, which was drawn using PDB 

file 4PYP and PDB Protein Workshop 3.9 [35]. B. Examples of transported glucose analogues: (i) 2-deoxy-D-glucose; (ii) 

3-O-methyl-D-glucose; (iii) 2-deoxy-2-fluoro-D-glucose (FDG). 

 

Much of the exploratory mutational analysis, topology predictions and structural modelling of 

GLUT1, and of other GLUTs, has been superceded by a recent X-ray crystal structure of human 

GLUT1 at 3.2 Å resolution in an inward-open conformation (PDB 4PYP) [36].  The structure 

constitutes an overall MFS and predicted GLUT protein fold but also has an intracellular helical 
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bundle comprised of four short α-helices that connects the N- and C-terminal domains (Figure 1A).  

This intracellular helical bundle was also seen in structures of the homologous proton-coupled active 

bacterial sugar porter proteins XylE [37] and GlcP [4].  The structure of GLUT1 has allowed an 

accurate mapping of disease-associated mutations and provided further insight into the alternating 

access mechanism of transport in GLUT proteins and its relation to the transport mechanism in 

homologous active sugar porters [36]. 

 

1.3. GLUT1 in human health and disease 

The importance of GLUT1 in the development and maintenance of a healthy human cannot be 

overemphasised.  Firstly, it is the ubiquitous glucose transporter thought to be constitutively expressed 

and responsible for basal glucose uptake to sustain respiration in most cells throughout the body and its 

level of expression is usually correlated with the rate of glucose metabolism and respiration [7,8].  

GLUT1 is expressed at the highest levels in the developing embryo, in the plasma membranes of 

erythrocytes and at the blood-brain barrier, but also in cardiomyocytes, adipocytes and smooth muscle 

cells, at endothelial and epithelial blood-tissue barriers, and intracellularly within the endoplasmic 

reticulum, Golgi apparatus and endosomes [9,38-44].  In erythrocytes GLUT1 is the only significant 

isoform of expressed GLUT protein with over 200,000 molecules per cell [16,45], constituting up to 3-

5% of all proteins [10] and 10-20% of integral membrane proteins [46].  This high level of expression 

enabled GLUT1 to be the only GLUT protein purified from its native cell type [14,47,48]. 

Because the human brain is almost entirely dependent upon glucose as an energy source, taking 

in ~100-150 g of glucose per day [49], and GLUT1 is unique in mediating glucose transfer across the 

blood-brain barrier, GLUT1 is essential for maintaining normal neurological functions.  Given the 

widespread distribution of GLUT1 and its highly important roles, it is clear that anything affecting the 

normal expression or functioning of GLUT1 can have severe consequences on human health.  A prime 

example is the relatively recently recognised GLUT1-deficiency syndrome [50], which results from 

mutations in the gene that expresses GLUT1.  An impaired function of the GLUT1 protein reduces the 

amount of glucose available to brain cells affecting brain development and function.  The condition is 

usually inherited in an autosomal dominant manner and neurological problems present in young 

children, including, difficulties in movement and speech and delay in development and intellectual 

disability [51-57].  GLUT1 defects are also increasingly being recognised as the cause of some genetic 

generalised epilepsies and other neurological disorders including early-onset absence epilepsy [58,59], 

familial idiopathic generalized epilepsy [60] and paroxysmal exercise-induced dyskinesia [61,62]. 
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GLUT1 is highly overexpressed in many types of cancer cells [63] including brain [64], breast 

[65], cervical [66], colorectal [67], cutaneous [68], endometrial [69], esophageal [70], hepatic [71], 

lung [72], oral [73], ovarian [74], pancreatic [75], prostate [76] and renal [77].  Because cancer cells 

have an altered metabolism and an increased demand for nutrients they usually show an upregulation 

of GLUT1 in order to provide an enhanced uptake of glucose in correlation with a greater rate of 

glycolysis.  This is accompanied by an increase in rate-limiting enzymes of the glycolytic pathway 

including hexokinase [78,79].  The ability of rapidly dividing tumour cells to break down glucose by 

glycolysis at a vastly higher rate than in normal tissues, even when ample oxygen is present, is known 

as the Warburg effect [80-85].  Under these ‘aerobic glycolysis’ conditions  most glucose is converted 

to lactate rather than being metabolised through oxidative phosphorylation so a high rate of glucose 

uptake is required to sustain energy levels for tumour growth.  The levels of GLUT1 expression and 

glucose uptake are therefore prognostic and diagnostic markers for the growth of tumours.  Measuring 

uptake of the 18F-labelled glucose analogue radiotracer 2-deoxy-2-fluoro-D-glucose ([18F]FDG) 

(Figure 1B) into tissues using positron emission tomography (PET) imaging is the most common 

method for identifying and monitoring tumours in patients.  Intravenous injection of [18F]FDG is 

followed by PET scanning to provide two- or three-dimensional images for the distribution of 18F-FDG 

within the body.  GLUT1 clearly plays a pivotal role in defining the distribution of 18F-FDG using this 

important clinical tool.  This review article considers the roles that GLUT1 plays in [18F]FDG PET 

imaging of cancers and also of neurological disorders, cardiovascular diseases and under diabetic 

conditions.  GLUT1 itself is also a potential therapeutic target for some of these human diseases. 

 

2. PET imaging using 2-deoxy-2-[18F]fluoro-D-glucose 

Positron emission tomography (PET) is a clinical nuclear medicine technique that reflects tissue 

physiology and metabolism in two- or three-dimensional images of the body.  This is in contrast to 

other clinical diagnostic tools such as magnetic resonance imaging (MRI) and x-ray computed 

tomography (CT), which provide predominantly anatomic information.  The PET system detects pairs 

of gamma rays emitted indirectly by a short-lived positron emitting radionuclide (or radiotracer), 

which is introduced into the body on a biologically active molecule.  The stages involved in PET 

imaging of a human body are illustrated in Figure 2.  Due to the short-lived nature of the gamma-

emitting radionuclides (11C - 20 minutes, 13N - 10 minutes, 15O - 2 minutes, 18F - 110 minutes), the 

sites of the cyclotron, radiosynthesis and PET scanner are often in relative close proximity of each 

other and coordinated alongside interaction with the patient.  The longer-lived 18F isotope can be 

transported to more remote locations, however. 
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Figure 2. Stages in PET imaging of the human body. (i) Radionuclide generation.  A positron emitting radionuclide with a 

short half-life is made using a particle accelerator (cyclotron), e.g. fluorine-18 (half-life 110 minutes) is produced by proton 

bombardment of oxygen-18 or deuteron bombardment of neon-20. (ii) Synthesis of radiolabelled bioactive molecule.  The 

cyclotron-generated radionuclide is incorporated into a bioactive molecule or drug compound, e.g. synthesis of 2-deoxy-2-

[18F]fluoro-D-glucose ([18F]FDG) using fluorine-18.  (iii) Injection into a patient.  The radiolabelled compound is injected 

into the bloodstream, often under fasting conditions, followed by a waiting period (usually 1 hour for [18F]FDG) allowing it 

to spread to body tissues. (iv) Detection of gamma (annihilation) photons. A positron emitted from the radiolabelled 

compound travels in tissue a short distance (typically less than 1 mm) and on encountering an electron there is an 

annihilation event where their combined mass is converted into two high energy (511 KeV) gamma photons emitted 

approximately 180º apart, which are detected by the scanning array that surrounds the patient.  The simultaneous detection 

of two emissions (coincidences) approximately opposite each allows the identification of a line of response between the 

two detectors along which the decay event occurred (those that do not arrive within a few nanoseconds of each other are 

ignored).  (v) Image construction.  Mathematical equations and computing are used to define the locations of hundreds of 

thousands of coincidence events from a scanning session.  These are used to generate a two- or three-dimensional image for 

the distribution of the radiolabelled compound in body tissues.  (vi) Normal [18F]FDG PET image.  This PET image 

(reproduced from http://www.rah.sa.gov.au/nucmed/PET/pet_docguide.htm, © 1997-2009, Nuclear Medicine, PET & Bone 

Densitometry, Royal Adelaide Hospital) shows the distribution of [18F]FDG in a healthy individual.  The PET image can be 

combined with images from MRI and/or CT scans. 

 

By far the most common and successful radiolabelled compound used in PET imaging is 

[18F]FDG, which is used in over 95% of PET procedures worldwide [86].  This compound was first 

synthesised by the direct electrophilic fluorination of 3,4,6-tri-O-acetyl-D-glucal with 18F-fluorine gas 

http://www.rah.sa.gov.au/nucmed/PET/pet_docguide.htm
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[87] (Figure 3A), but this method and its variations have a relatively low radiochemical yield.  The 

preferred method for synthesising [18F]FDG in PET applications is nucleophilic substitution of the 

acetylated sugar derivative 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethane-sulfonyl-β-D-mannopyranose 

by 18F-fluoride ions using Kryptofix 2.2.2TM as a catalyst followed by separation of reaction products 

and hydrolysis [88] (Figure 3A).  This method gives higher radiochemical yields (up to 60%) in a 

shorter time with modern automated synthesis modules producing [18F]FDG in under half an hour.  

The methods for synthesis of [18F]FDG and associated quality control considerations have been 

reviewed [89-91].  The only difference in chemical structure between [18F]FDG and glucose is a 

fluorine atom attached at carbon-2 instead of a hydroxyl group (Figure 1), so when injected into the 

body [18F]FDG is transported into cells by GLUT1 (and other sugar transporters) in the same manner 

as glucose.  On entering the cell [18F]FDG is phosphorylated by hexokinase to [18F]FDG-6-phosphate, 

but unlike glucose, this cannot be metabolised any further by the glycolytic pathway [92] (Figure 3B).  

[18F]FDG-6-phosphate also cannot cross cell membranes so it becomes trapped and accumulates 

within the cell.  As the 18F label decays radioactively it is converted to 18O-, which picks up a proton 

from a hydronium ion in the aqueous environment and the molecule becomes glucose-6-phosphate 

with non-radioactive 18O at the 2-position, which is harmless (Figure 3B).  This 18O-labelled glucose-

6-phosphate can then be metabolised as normal.  In PET studies, [18F]FDG is therefore an excellent 

marker for the uptake of glucose into specific tissues and of their glycolytic state.  A number of other 

radiofluorinated carbohydrates have also been used in PET studies [93]. 

In examining PET scans with [18F]FDG it is important to be aware of the distribution of 

[18F]FDG in a healthy individual before using them to recognise disease states.  As would be expected, 

the highest levels of [18F]FDG accumulation in a normal PET scan are in tissues with the highest 

expression of GLUT1 and the highest rates of glycolysis, which are principally the brain and cardiac 

tissue (Figure 2).  Normal individuals do not excrete glucose via the urinary system because it is freely 

filtered by glomeruli and rapidly reabsorbed by the nephron of the kidney.  In contrast, [18F]FDG is 

poorly reabsorbed after filtration and is excreted in large amounts in the urine [86].  Consequently, an 

intense [18F]FDG activity is usually observed in the kidneys, ureters and bladder (Figure 2).  Lower 

levels of [18F]FDG uptake can also be observed in a number of others tissues in a healthy individual 

depending on their physiological state [86,94].  This includes a low and diffuse activity in liver and 

spleen and variable activity in stomach and bowel smooth muscle.  Uptake in skeletal muscle is 

dependent on levels of stress and/or physical activity, so a patient is usually rested prior to and 

following injection of [18F]FDG.  Low uptake in bone marrow produces faint observation of vertebrae, 
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pelvis and ends of humerus and femur.  Moderate activity in pharynx, tonsils, salivary glands and 

vocal chords is often seen and vascular uptake can provide an outline observation of blood vessels. 
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Figure 3. Synthesis and metabolism of [18F]FDG. A. Synthesis of [18F]FDG by electrophilic fluorination of 3,4,6-tri-O-

acetyl-D-glucal by 18F-fluorine gas or by nucleophilic substitution of 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethane-sulfonyl-

β-D-mannopyranose by 18F-fluoride ions using Kryptofix 2.2.2TM as a catalyst. B. Metabolism of [18F]FDG following 

GLUT1-mediated transport into cells.  [18F]FDG is phosphorylated by hexokinase to [18F]FDG-6-phosphate, which cannot 

be metabolised further by glycolysis.  The 18F label decays radioactively to 18O-, which picks up a proton and the molecule 

becomes glucose-6-phosphate.  This 18O-labelled glucose-6-phosphate is then metabolised as normal. 

 

PET scans using [18F]FDG can cover the whole body or focus on specific organs or body 

regions.  They can be used to map normal brain and heart function, monitor blood flow to the heart, 

determine the effects of myocardial infarction on the heart, detect and follow the spread of cancers, 

monitor cancers during and after treatment, identify and monitor neurological disorders, other 

cardiovascular diseases and the effects of diabetes.  Transport of glucose and [18F]FDG by GLUT1 

plays a pivotal role in all of these. 
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3. GLUT1 in [18F]FDG PET imaging of cancers 

3.1. Introduction 

PET imaging with [18F]FDG is a routine and essential clinical tool used in the diagnosis and treatment 

of a wide range of cancers.  As already described in the Introduction, this arises from the enhanced 

uptake of glucose and rate of glycolysis common to all cancer cells, a property that allows them to be 

distinguished from normal cells.  In PET scans [18F]FDG accumulation is used as a marker of glucose 

uptake and glycolytic activity, which is often correlated with the level of GLUT1 expression.  As 

tumours become more established there is a movement towards hypoxic conditions under which the 

transcription factor hypoxia-inducible factor-1α (HIF-1α) promotes an even further upregulation in the 

expression of GLUT1 and of glycolytic enzymes including hexokinase.  A high expression of GLUT1 

and/or of hexokinase is usually associated with a poor prognosis in many types of cancers [95,96].  

There are of course a large number of other metabolic changes that occur in the microenvironment of a 

tumour [97,98], but these will not be considered here.  Changes in metabolic features associated with 

malignancy often precede the morphologic findings that are demonstrated with anatomic imaging 

techniques.  Importantly, PET imaging using [18F]FDG can be used to detect early changes in the 

metabolism of cancer cells, which can allow an early prognosis of the disease.   This allows an early 

intervention with appropriate treatments that are more likely to have a successful outcome.  Cancers 

that are further advanced are detected more easily and [18F]FDG scans are also used to monitor 

progress during treatment and after treatment to look for possible recurrence.  Parallel or retrospective 

measurements of the expression of GLUT1, hexokinase and other biological markers are also 

performed.  It is beyond the scope of this review to include all published results for the PET imaging 

of cancers using [18F]FDG, so the remainder of this section will consider the roles of GLUT1 in 

[18F]FDG PET imaging of some common and pertinent cancers and highlight GLUT1 as a potential 

therapeutic target for cancer treatments. 

 

3.2. Lung cancer 

Lung cancer is the most common form of diagnosed malignancy worldwide and it has the highest rate 

of cancer mortality [99].  [18F]FDG PET imaging is especially useful for investigating non-small cell 

lung cancer (NSCLC), which accounts for the large majority of lung cancer cases.  Viable lung cancer 

cells show a particularly high accumulation of [18F]FDG compared with normal lung tissue, which 

assists in making decisions for a clear diagnosis and during the management of tumours [100].  

Examples of [18F]FDG PET images of lung cancers are shown in Figure 4. 
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Figure 4. [18F]FDG PET imaging of a lung cancer. A. An axial view CT scan reveals a non-specific nodule in the right 

lung (arrow). B. A [18F]FDG PET scan from the same view as in the CT scan shows an enhanced uptake of [18F]FDG into 

the nodule (arrow), which was confirmed to be lung cancer.  C. In a different patient, a full body [18F]FDG PET scan shows 

an enhanced uptake of [18F]FDG into a known lung cancer in the left upper lobe (upper arrow) and also into two small 

ipsilateral mediastinal lymph nodes (arrowheads).  This research was originally published in JNMT.  Acker MR, Burrell 

SC. Utility of 18F-FDG PET in evaluating cancers of lung. J Nucl Med Technol. 2005; 33(2): 69-74 [100]. © by the Society 

of Nuclear Medicine and Molecular Imaging, Inc. 

 
A recent retrospective study on the biological significance of [18F]FDG uptake on PET in 

patients with NSCLC demonstrated that a high [18F]FDG uptake was significantly associated with poor 

prognosis.  [18F]FDG uptake was significantly correlated with expression of GLUT1, hexokinase I and 

HIF-1α and also of vascular endothelial growth factor (VEGF), microvessels (CD34), epidermal 

growth factor receptor (EGFR), and molecules relevant to the PI3K/Akt/mTOR signaling pathway p-

Akt and p-mTOR.  Furthermore, the uptake of [18F]FDG was significantly decreased by the inhibition 

of GLUT1 and GLUT1 upregulation by the induction of HIF-1α increased the [18F]FDG uptake, thus 

confirming their roles in PET imaging of lung cancer [101].  An earlier study had also demonstrated a 

significant correlation between GLUT1 expression and [18F]FDG uptake in lung cancers, but whilst 

[18F]FDG uptake correlated significantly with tumour size, GLUT1 expression did not [102].  Lactate 

dehydrogenase A (LDHA) plays an important role in the development and spread of lung cancers and 

a separate retrospective study investigated the relationship between [18F]FDG accumulation and 

LDHA expression.  This showed that LDHA increases [18F]FDG accumulation into NSCLC, possibly 

by upregulation of GLUT1 expression but not hexokinase II expression, so LDHA may modulate 

[18F]FDG uptake in lung cancers via the AKT-GLUT1 pathway [103].  NSCLC patients that have 

underlying mutations in the Kirsten RAS (KRAS) oncogene can fail to benefit from adjuvant 

chemotherapy and their disease does not respond to epidermal growth factor receptor (EGFR) 

inhibitors such as gefitinib and erlotinib [104].  A retrospective study of NSCLC cases has found a 
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significant correlation between GLUT1 overexpression and KRAS mutations and the survival of 

patients with GLUT1 overexpression was significantly worse when compared to patients with normal 

expression of GLUT1.  GLUT1 overexpression therefore correlates with this aggressive phenotype of 

lung cancer [105]. 

 

3.3. Breast cancer 

Breast cancer has the second highest number of diagnosed malignancies worldwide, although this does 

not correlate with the number of mortalities since treatments are relatively successful [99].  Alongside 

other screening techniques, [18F]FDG PET imaging plays an important role in the diagnosis of 

different types and stages of breast cancers and during their treatment [106-110].  An example of using 

[18F]FDG PET to diagnose a rare case of breast cancer in a lactating woman is shown in Figure 5. 

 

A B

C D

 

Figure 5. [18F]FDG PET imaging of a breast cancer.  Axial views of a CT scan (A), [18F]FDG PET scan (B) and a 

combined PET/CT scan (C) and a full body [18F]FDG PET scan (D) of a lactating women who presented with a lump in the 

right breast.  The intense uptake of [18F]FDG in the soft tissue lesion in the right breast was confirmed to be breast cancer.  

This research was originally published in Onc Gas Hep Rep. Kamaleshwaran KK, Natarajan S, Rajan F, Mohanan V, 

Shinto AS. Image findings of a rare case of gestational breast cancer diagnosed in a lactating woman with fluorine-18 

fluorodeoxyglucose-positron emission tomography/computed tomography. Onc Gas Hep Rep. 2014; 3: 34-35 [110]. © by 

Oncology, Gastroenterology and Hepatology Reports. 
 

Factors that have a major influence on [18F]FDG uptake in breast cancers include expression of 

GLUT1 and hexokinase I and also the number of viable tumour cells per volume, histological subtype, 

tumour grading, microvessel density and proliferative activity [111].  An immunohistochemical study 
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of excised early-stage breast carcinomas, which had previously been detected in [18F]FDG PET scans, 

revealed a significant correlation between [18F]FDG uptake, new blood vessel formation and GLUT1 

expression.  This confirmed the usefulness of [18F]FDG PET and other biomarkers for detecting 

angiogenesis in early breast cancer [112].  An investigation of the relevance of single-nucleotide 

polymorphisms (SNPs) in the GLUT1 gene with respect to uptake of [18F]FDG and tumour 

aggressiveness in breast cancer revealed a significant role of the XbaI G>T polymorphism [113].  The 

GLUT1 XbaI G>T SNP, which represents a G-to-T transversion in intron 2 of GLUT1, may therefore 

be a prognostic factor for the aggressiveness of the phenotype in breast cancers.  A significant 

association between the GLUT1 XbaI G>T SNP and genetic susceptibility to nephropathy in type 1 

diabetes has also been identified [114].  The monoclonal antibody trastuzumab used in the treatment of 

some breast cancers targets HER2 receptors, which are overexpressed in 20-30% of breast cancers.  

Trastuzumab downregulates signalling through the Akt/PI3K and MAPK pathways that modulate 

glucose and phospholipid metabolism.  Treatment of HER2-expressing breast cancer xenografts with 

trastuzumab showed a significant decrease in [18F]FDG accumulation and in expression of GLUT1 and 

hexokinase II.  The same study also used 31P NMR to show a parallel decrease in phosphocholine and 

phosphoethanolamine in chemical extracts in the same xenografts treated with trastuzumab [115]. 

 

3.4. Colorectal cancer 

Colorectal or bowel cancer has the third highest number of diagnosed malignancies worldwide [99].  

[18F]FDG PET plays an important role in the diagnosis and management of colorectal cancers where 

there is a significant positive correlation between accumulation of [18F]FDG and expression of 

GLUT1, hexokinase II and HIF-1α [116-118].  In contrast, a correlation between accumulation of 

[18F]FDG and expression of proliferative cellular nuclear antigen (PCNA) has not been observed 

suggesting that the overexpression of GLUT1 is associated with the hypoxic environment in tumours 

rather than with tumour growth [119].  Indeed, GLUT1 has been specifically highlighted as an 

important molecular marker for the degree of hypoxia experienced by tumours in colorectal cancer 

patients [120].  A retrospective analysis of colorectal tumours showed that accumulation of [18F]FDG 

was higher in the presence of KRAS/BRAF gene mutations and this was positively correlated with 

GLUT1 expression but not with hexokinase II expression [121].  KRAS gene mutations occur in 30-

40% of colorectal cancers and are associated with resistance to anti-epidermal growth factor receptor 

therapy and with a poorer likelihood of survival [122].  In colorectal cancer cells with KRAS 

mutations the knockdown of GLUT1 produces a significant decrease in accumulation of [18F]FDG.  

Also, hypoxic induction of HIF-1α is higher in KRAS-mutant cells than in wild-type cells and elevated 
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HIF-1α results in higher GLUT1 expression and accumulation of [18F]FDG [123].  These observations 

suggest that KRAS mutations produce higher accumulation of [18F]FDG by upregulation of GLUT1 

and that HIF-1α further increases accumulation of [18F]FDG in hypoxic lesions.  [18F]FDG PET may 

therefore be useful in predicting the KRAS status of patients with colorectal cancer and help in the 

design and management of therapeutic strategies [123]. 

 

3.5. Prostate cancer 

Prostate cancer can be more challenging to image using [18F]FDG PET because glucose utilisation in 

well-differentiated prostate cancer is often lower than in other tumour types and the normal urinary 

excretion of [18F]FDG can mask pathological accumulation [124,125].  An enhanced expression of 

GLUT1 is found in prostate carcinoma cells, which includes a novel co-localisation of GLUT1 with a 

Golgi marker.  This GLUT1 Golgi association may supply glucose to the Golgi for by-product 

incorporation into the prostatic secretory fluid [76].  For prostate cancer patients treated with radical 

prostatectomy a significant number will endure a recurrence of the disease.  An immunohistochemical 

study of prostate cancer tissue revealed that expression of GLUT1 correlates significantly with a 

shorter time to biochemical recurrence and accumulation of prolyl-4-hydroxylases 1 is also a 

significant marker for a worse prognosis [126].  Whilst early-stage prostate cancer is confined to the 

prostate and responds to androgens, a later stage more aggressive metastasised cancer is associated 

with loss of androgen responsiveness.  Androgen responsive and non-responsive prostate cancer cells 

have different glycolytic metabolism profiles, including a higher lactate production by the latter [127].  

The flavanoids genistein, phloretin, apigenin, and daidzein have different effects on reducing GLUT1 

expression and glucose uptake in androgen responsive versus non-responsive prostate cancer cells and 

therefore different effects on reducing cell growth [128]. 

 

3.6. Thyroid cancer 

Thyroid cancers are routinely diagnosed and monitored using [18F]FDG PET imaging [129,130].  An 

example of enhanced accumulation of [18F]FDG into a thyroid is shown in Figure 6, in this case 

demonstrating how use of [18F]FDG PET has also reduced the number of  unnecessary 

hemithyroidectomies for thyroid nodules that otherwise have inconclusive cytologic results [131].  An 

investigation of glucose transporter expression in thyroid carcinomas with different grades of 

malignancy revealed that overexpression of GLUT1 on the cell membrane of thyroid neoplasms is 

closely related to tumours at a more aggressive stage.  It was therefore proposed that measurement of 

[18F]FDG uptake and of GLUT1 expression in thyroid cancer tissue may be a useful prognostic in 
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identifying patients at the highest risk [132].  This correlation has been confirmed more recently in a 

study that demonstrated an increase in GLUT1 expression and [18F]FDG uptake with escalating 

dedifferentiation/aggressiveness of thyroid carcinoma types in the order: differentiated thyroid 

carcinoma (DTC) → poorly differentiated thyroid carcinoma (PDTC) → anaplastic thyroid carcinoma 

(ATC) [133].  The PTEN tumour suppressor is a phosphatase that antagonises the PI3k/Akt signalling 

pathway and is the second most mutated gene in human cancer [134].  PTEN is frequently mutated or 

deleted in thyroid cancers, and since GLUT1 expression is under control of the PI3k/Akt pathway, 

inactivation of PTEN results in amplified expression of GLUT1 and an enhanced uptake of [18F]FDG 

in PET images [135].  Indeed, recent genetic manipulations of PTEN expression have demonstrated 

that a lack of PTEN has a dominant effect on the expression of GLUT1 and on glucose uptake.  

Inactivation of PTEN therefore increases the chance of thyroid cancer detection by [18F]FDG PET 

[136]. 

 

Figure 6. [18F]FDG PET imaging of a thyroid cancer. Front and side view [18F]FDG PET scans showing enhanced 

accumulation of [18F]FDG in a thyroid nodule.  This research was originally published in JNM.  de Geus-Oei LF, Pieters 

GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, et al. 18F-FDG PET reduces unnecessary 

hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med. 2006; 47(5): 770-775 [131]. © by 

the Society of Nuclear Medicine and Molecular Imaging, Inc. 
 

3.7. Esophageal cancer 

Esophageal cancer has one of the worst levels of prognosis since it is often identified at a relatively 

late stage [137].  Amongst other techniques, [18F]FDG PET imaging is used in the diagnosis and 

management of esophageal cancer [138], an example of a [18F]FDG PET image of a patient with a 

long esophageal tumour is shown in Figure 7.  An immuohistochemical evaluation of esophageal 

cancers showed an expression of GLUT1 and of hexokinase II in addition to an enhanced 

accumulation of [18F]FDG.  The accumulation of [18F]FDG had a closer correlation with hexokinase II 

expression than with GLUT1 expression, however [139], suggesting that hexokinase II activity was the 

limiting factor to tumour growth.  A later study of GLUT1 expression in both primary tumors and 

metastatic lymph nodes of esophageal squamous cell carcinomas showed that GLUT1 expression and 

tumour size had a direct correlation with [18F]FDG accumulation [140].  An association has also been 

demonstrated between a high expression of GLUT1 on primary lesions of esophageal squamous cell 
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carcinomas and hematogenous recurrence [141], thus confirming GLUT1 expression as an important 

marker of esophageal cancer. 

 

Figure 7. [18F]FDG PET imaging of an esophageal cancer. Full body [18F]FDG PET scan showing enhanced accumulation 

of [18F]FDG in a long esophageal tumour.  This research was originally published in JNM. van Westreenen HL, Cobben 

DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in 

esophageal cancer. J Nucl Med. 2005; 46(3): 400-404 [138]. © by the Society of Nuclear Medicine and Molecular Imaging, 

Inc. 
 

3.8. Other cancers 

In relation to [18F]FDG PET imaging of other types of cancers, the association between [18F]FDG 

accumulation and expression of biological markers including GLUT1 has been investigated.  Use of 

[18F]FDG PET for detection of gastric cancer is not straightforward since the uptake of [18F]FDG can 

be very variable.  In a correlation study against [18F]FDG uptake, tumour size had a significant 

correlation and expression of HIF1α showed some correlation.  The expression of GLUT1, hexokinase 

II and PCNA showed no correlation, however.  This has lead to the suggestion that [18F]FDG uptake is 

a representation of tissue hypoxia rather than glucose transport in gastric cancers [142].  An overview 

of PET imaging in gastric cancer has been prepared by Kamimura and Masayuki [143].  Cervical 

cancer is the third most common cancer in women worldwide and is a significant cause of mortality in 

developing countries [144].  In a study to investigate the association between [18F]FDG uptake and 

biological marker expression in cervical cancers, [18F]FDG uptake was associated with the presence of 

GLUT1, nuclear hexokinase II, cytoplasmic HIF1α and VEGF and there was a significant correlation 

with the rate of expression of GLUT1, hexokinase II, cytoplasmic HIF1α, and carbonic anhydrase-IX 

(CA-IX) [145].  In thymic epithelial tumours the uptake of [18F]FDG shows a good correlation with the 

expression of GLUT1 and hexokinase II [146].  Consequently, [18F]FDG PET imaging is a useful tool 

in the diagnosis and management of thymic epithelial tumours [147].  Interim [18F]FDG PET has an 
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essential role in the management of Hodgkin’s lymphoma during therapy and in clinical trials 

[148,149] and a correlation between [18F]FDG uptake and GLUT1 expression has been demonstrated 

[150,151].  A recent investigation of GLUT1 expression in different Hodgkin lymphoma subtypes 

revealed significant variability and no correlation with [18F]FDG uptake, however, suggesting that PET 

findings indicative of Hodgkin lymphoma relapse should always be confirmed by histological analysis 

[152].  [18F]FDG PET imaging also has a role in the detection and characterisation of brain tumours 

[153], but the brain is not usually included in routine whole body PET scans for cancers. 

 

3.9. GLUT1 as a therapeutic target in cancer 

The enhanced glycolytic activity in cancer cells required for their proliferation makes tumour 

glycolysis an obvious therapeutic target for the treatment and management of cancers [97,154-161].  

Because GLUT1 feeds the essential nutrient glucose into glycolysis and it is essentially the first rate 

limiting step in glycolytic activity, the expression and/or activity of GLUT1 in tumours is therefore a 

therapeutic target in cancer therapy.  Furthermore, the amplified expression of GLUT1 could also be 

used for the targeted transport of anticancer compounds into tumours [159,162-164].  Such approaches 

have to be specific for GLUT1 in cancer cells and not have adverse effects on glycolytic activity in 

normal cells. 

A possible approach to cancer therapy is inhibition of GLUT1 activity by the direct binding of 

a small-molecule inhibitor.  Recently identified inhibitors of GLUT1 include two compounds from a 

pairwise chemical genetic screen that inhibited glucose transport in sealed erythrocyte membranes 

having a non-competitive mode of inhibition with apparent Ki values of 0.8 and 1.2 μM [165], but 

these compounds have not been investigated thoroughly for cancer therapy.  A compound call STF-31 

has been identified from a high-throughput chemical synthetic lethal screen that specifically binds to 

and inhibits GLUT1.  Treatment with STF-31 resulted in inhibition of the growth of renal cell 

carcinomas and no cytotoxic activity in normal tissue.  This compound shows promise for clinical 

testing of human tumors for renal cancer therapy monitored by [18F]FDG PET [166].  A small library 

of novel polyphenolic ester compounds were synthesised that inhibit basal glucose transport in lung 

and other cancer cells and that also inhibit cell proliferation and induce apoptosis in lung and breast 

cancer cells by mimicking glucose deprivation [167,168]. The representative compound WZB117 [3-

fluoro-1,2-phenylene bis(3-hydroxybenzoate)] (Figure 8), which inhibits glucose transport in human 

red blood cells, not only inhibited cell growth in cancer cell lines but also inhibited cancer growth in a 

mouse model.   
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Cancer cells treated with WZB117 had decreased levels of GLUT1 expression, intracellular 

ATP and glycolytic enzymes resulting in a lowered rate of glycolysis and cellular growth [169].  

Interestingly, the addition of exogenous ATP rescued the growth of WZB117-treated cancer cells, 

suggesting that the reduction of intracellular ATP plays an important role in the anticancer effect of 

WZB117 [159,169].  WZB117 also inhibits the self-renewal and tumor-initiating capacity of cancer 

stem cells in vitro and administration into an in vivo system resulted in inhibition of tumour initiation 

after implantation of cancer stem cells with no significant adverse effects on the host animals [170].  

The naturally occurring polyphenol resveratrol (3,5,4'-trihydroxy-trans-stilbene) (Figure 8) interacts 

directly with GLUT1 and inhibits the transport of hexoses across the cell membrane.  It is proposed 

that resveratrol binds at an endofacial site on GLUT1 and that the demonstrated inhibition is distinct 

from the effect of resveratrol on the intracellular phosphorylation/accumulation of glucose [171]. 

 

WZB117

Resveratrol

 
Figure 8. Structures of the GLUT1 inhibitors WZB117 and resveratrol. 

 

Resveratrol has shown some promise for the prevention or treatment of a number of cancers, 

but in vivo observations are still inconsistent [172].  In a study to investigate the effect of resveratrol on 

cancer cell glucose metabolism and the associated role of reactive oxygen species in the response, 

treatment with resveratrol resulted in a significant decrease in [18F]FDG uptake.  This was attributed to 

a reduction in glycolysis rate and GLUT1 expression [173].  Levels of intracellular reactive oxygen 

species and the expression of HIF-1α decreased in parallel with the [18F]FDG uptake.  Because 

inhibitors of HIF-1α expression resulted in suppression of [18F]FDG uptake, it was proposed that 

resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated HIF-

1α activation [173].  A recent study in ovarian cancer cells demonstrated that selective inhibition of 

glucose uptake by resveratrol was due to interruption of intracellular GLUT1 trafficking to the plasma 

membrane associated with inhibition of Akt activity by resveratrol.  Resveratrol had no affect on 

GLUT1 mRNA and protein expression [174].  An indirect approach to reducing GLUT1-mediated 
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glucose uptake and resultant glycolytic activity in cancer cells is to modulate expression of GLUT1.  

This has been effective in altering mouse mammary tumor cell growth both in vitro and in vivo [175]. 

 

4. GLUT1 in [18F]FDG PET imaging of neurological disorders 

4.1. Introduction 

PET imaging of the brain enables a non-invasive in vivo examination of brain functions including 

cerebral blood flow, metabolism, receptor binding and their responses to neurological disorders and 

treatment with drugs.  The wide range of neurological disorders for which PET imaging contributes to 

diagnosis and monitoring alongside other techniques include Alzheimer’s disease and other dementias, 

Parkinson’s disease and other movement disorders, epilespsy, schizophrenia, multiple sclerosis and 

cerebral ischemia [176-183].  Those disorders that have an altered glucose metabolism and/or blood 

flow can be examined by [18F]FDG PET, but a number of other radiotracers are also used for PET 

imaging of the brain [184]. 

 

4.2. Alzheimer’s disease 

Alzheimer’s disease is the most common form of dementia, accounting for an estimated 60-80% of 

dementia cases [185], which starts with impairment of memory followed by multiple domains of 

cognitive dysfunction.  [18F]FDG PET is a widely accepted clinical tool for the examination of 

pathophysiological changes associated with Alzheimer’s disease, especially in early stage diagnosis 

[186-191].  [18F]FDG PET measures the cerebral metabolic glucose utilization rate (CMRglc), which is 

is a standard marker of synaptic activity, neuronal function and neuronal metabolic activity [191,192].  

Alzheimer’s disease is characterised in [18F]FDG PET images by a distinct pattern of hypometabolism 

in the regions of parietotemporal association cortices, posterior cingulate, and precuneus at early stages 

of the disease, which spreads to the frontal association cortices in moderate to severe stages [189].  

Such regions of hypometabolism can be detected in [18F]FDG PET images in mild cognitive 

impairment patients not yet converted to Alzheimer’s disease and before atrophy is detected in MRI 

scans of the same region [186], hence the importance of [18F]FDG PET in early stage diagnosis.  

Cerebral [18F]FDG PET images for a cognitively normal individual with low risk for Alzheimer’s 

disease and an individual with high risk for Alzheimer’s disease are compared in Figure 9.  

Alzheimer’s disease can be distinguished in [18F]FDG PET images from other dementias, such as 

Lewy body dementia and frontotemporal dementia, which have different patterns of hypometabolism 

[193,194].  By its very nature, the regions of hypometabolism detected in [18F]FDG PET images is the 

result of a decrease in glucose consumption, associated with a decrease in synaptic number and with 
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synaptic dysfunction in the neurons of affected regions prior to cell death and detectable atrophy 

[190,195].  As may be expected, the regions with a decrease in glucose consumption have a direct 

correlation with a decrease in GLUT1 expression and a downregulation of HIF-1α [196-198] and it is 

considered that reduction in glucose transport is a causative effect of hypometabolism in dementias. 

 

A B

 

Figure 9. Cerebral hypometabolism in early-stage Alzheimer’s disease. Comparison of cerebral [18F]FDG PET images for 

a cognitively normal individual with low risk of Alzheimer’s disease (A) and an individual with high risk for Alzheimer’s 

disease (B).  The cerebral metabolic glucose utilization rate (CMRglc) is displayed as the Standardised Uptake Value ratio 

(SUVR) using a colour-coded scale.  This research was originally published in JAD.  Mosconi L, Berti V, Glodzik L, Pupi 

A, De Santi S, de Leon MJ. Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid 

imaging. J Alzheimers Dis. 2010; 20(3): 843-854 [187]. © by IOS Press. 
 

4.3. Parkinsons’s disease 

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder.  The 

various parkinsonian syndromes and other movement disorders exhibit different patterns of cerebral 

glucose metabolism such that [18F]FDG PET is used to assist in their diagnosis and differentiation and 

for continuous monitoring.  For example, idiopathic Parkinson’s disease (IPD), progressive 

supranuclear palsy (PSP) and multiple system atrophy (MSA) have some common symptoms but 

different pathophysiology in the cortical and subcortical structures of the brain.  In addition to other 

differences, IPD has normal or increased glucose metabolism in the striatum but hypometabolism in 

temporoparietal regions, PSP has bilateral striatal and frontal hypometabolism, whilst MSA has 

hypometabolism in striatal, brainstem, and cerebellar regions [176,199-201].  The atypical 

parkinsonian syndromes of PSP and MSA have a much poorer long-term prognosis than IPD so an 

accurate and early differential diagnosis is important.  Spatial covariance analysis has been applied to 

[18F]FDG PET to further characterise the cerebral metabolic pattern in PD revealing increased pallido-

thalamic and pontine metabolic activity along with relative reductions in premotor cortex, 

supplementary motor area and in parietal association areas (Figure 10) [202].   The metabolic pattern 
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in PSP has been further characterised by decreased accumulation in the upper brainstem and medial 

prefrontal cortex as well as in medial thalamus, caudate nuclei, anterior cingulated area and superior 

frontal cortex, whilst the MSA pattern has decreases in putamen and cerebellum [202].  Other 

computer-aided diagnosis methods have been used to assist in the differentiation of parkinsonian 

syndromes from [18F]FDG PET images [203-205].  Association between motor, cognitive and 

emotional dysfunction with distinct patterns of cerebral metabolic changes has also been identified in 

PD from [18F]FDG PET images [206].  Although GLUT1 clearly plays a role in the uptake of 

[18F]FDG in PET imaging of parkinsonian disorders, very little work has been performed to investigate 

expression and/or activity of GLUT1 in direct relation to these.  One study using a mouse model of PD 

showed no changes in localisation or density of GLUT1 despite the impairment in glucose metabolism 

[207]. 

Putamen Thalamus
Premotor

cortex

Primary
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Parietal

association
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Figure 10. Pattern of cerebral glucose metabolism in Parkinson’s disease. Spatial covariance analysis of [18F]FDG PET 

images revealed the cerebral pattern of glucose metabolism in PD showing increased pallido-thalamic and pontine 

metabolic activity (red) along with relative reductions in premotor cortex, supplementary motor area and in parietal 

association areas (blue).  This research was originally published in PET clinics.  Poston KL, Eidelberg D. FDG PET in the 

evaluation of Parkinson's disease. PET Clin. 2010; 5(1): 55-64 [202]. © by Elsevier Inc. 

 

4.4. Epileptic disorders 

Epileptic disorders particularly benefit from [18F]FDG PET examination when surgical treatment is a 

likely option since it helps to precisely identify and/or confirm the location of cerebral epileptogenic 

sites, which may be invisible or partially invisible to other diagnostic techniques such as 

electroencephalography (EEG) or MRI [208-213].  Between seizures (interictal), epileptogenic sites 

typically show hypometabolism and therefore a decreased accumulation of [18F]FDG [210,214,215].  

During seizures (ictal), regions of hypermetabolism may also be observed so, alongside [18F]FDG 

PET, it is important to continuously monitor the patient with scalp EEG to confirm if there is any 
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seizure activity during the time of [18F]FDG injection and scanning [216].  An automated computer-

aided diagnostic tool for interictal [18F]FDG PET analysis of temporal lobe epilepsy has been 

developed.  The tool operates on distributed metabolic changes across the whole brain to diagnose and 

lateralise epileptogenic sites and can work both independently and alongside expert analysis [217].  As 

already mentioned in the Introduction, defects in GLUT1 are increasingly being recognised as the 

cause of some genetic generalised epilepsies including early-onset absence epilepsy [58,59] and 

familial idiopathic generalized epilepsy [60]. 

 

4.5. Schizophrenia 

In individuals with schizophrenia, cerebral glucose metabolism and pathophysiology have been 

investigated using [18F]FDG PET with varying results reported under both medicated and unmedicated 

conditions.  It is considered that significant heterogeneity in the patterns of schizophrenia make 

investigations of its origin and mechanisms a major challenge [218].  For example, one study in 

unmedicated patients showed enhanced glucose metabolism in cerebral white matter, specifically in 

the frontal white matter, corpus callosum, superior longitudinal fasciculus and white matter core of the 

temporal lobe.  This was accompanied by hypometabolism in grey matter, specifically in the frontal 

and temporal lobes, caudate nucleus, cingulate gyrus, and mediodorsal nucleus of the thalamus [219].  

[18F]FDG PET has also been used to investigate the effects of antipsychotic drugs [220-223], cannabis 

use [224,225] and auditory verbal hallucinations [226,227] on the pattern of cerebral glucose 

metabolism in schizophrenia and to differentiate it from the pattern in bipolar disorder [228].  A 

hypothesis for pathogenesis of schizophrenia based on impaired neuronal glucose uptake by GLUT1 

and GLUT3, either in expression levels or functional capacity, has been presented [229]. 

 

4.6. Multiple sclerosis 

Multiple sclerosis (MS) is the most common neurological disorder diagnosed in young adults.  This is 

an autoimmune disease characterised by loss of motor and sensory function resulting from immune-

mediated inflammation, demyelination and subsequent axonal damage [230].  [18F]FDG PET analysis 

has revealed both widespread and regional cerebral glucose hyometabolism in MS patients [231,232] 

and that the global cortical cerebral metabolism decreases in correlation with disease progression 

[233].  Some regions of glucose hypermetabolism are also evident and thought to be compensatory 

effects [234,235].  Hence, [18F]FDG PET serves as a marker of disease activity in helping to 

understand the pathophysiological patterns in MS and their responses to therapy.  [18F]FDG uptake is 

decreased in the thoracic and lumbar spinal cord regions of MS patients, which could be associated 
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with autonomic nervous system and motor dysfunctions [236].  Also, MS patients sometimes have 

asymmetries in comparative strengths of leg muscles accompanied by walking difficulties and this is in 

correlation with glucose uptake according to [18F]FDG PET [237].  The exact origins and mechanisms 

of MS pathogenesis are yet to be unravelled, but the perturbed glucose metabolism has been 

considered as a cause as well as a consequence in MS [238].  An absence of the β2-adrenergic receptor 

(β2AR) in astrocytes occurs in MS patients, and since β2AR promotes glucose uptake through GLUT1 

and accelerates glucose metabolism, a downregulation of β2AR activity may accelerate the 

development of MS [239].  β2AR and/or GLUT1 are therefore potential therapeutic targets for 

upregulation in the prevention or treatment of MS. 

 

4.7. Cerebral ischemia 

Cerebral ischemia and its response to potential therapies has been investigated using [18F]FDG PET 

with the large majority of studies performed in animal or in vitro models due the nature of strokes.  

Under conditions of oxygen deprivation in living brain slices, which is consistent with acute cerebral 

ischemia, a hyperaccumulation of [18F]FDG was demonstrated especially in the hippocampus and 

thalamus.  The enhanced glucose metabolism was associated with an increased glutamate efflux after 

hypoxia and anoxia and glucose metabolism was also increased by the addition of glutamate and 

attenuated by an N-methyl-D-aspartate (NMDA) receptor antagonist.  It was therefore considered that 

activation of NMDA receptors by glutamate during acute cerebral ischemia might be responsible for 

the hyperutilisation of glucose in the hippocampus and thalamus [240].  Tissue regions of interest in 

cerebral ischemia include the ischemic core, the border that progresses to infarction (recruited tissue) 

and the border that recovers with early reperfusion (recoverable tissue).  [18F]FDG PET studies in rat 

models have shown that in the ischemic core glucose consumption is severely depressed due to 

irreversible cellular injury, whilst it is maintained or increased in the penumbral regions during 

ischemia.  Early after reperfusion, glucose consumption is severely reduced even though glucose and 

oxygen are available, but this glycolytic depression is not always related to subsequent development of 

brain infarction [241-243].   

Consequently, [18F]FDG PET is considered as a potential tool for the management of acute 

stroke patients along with other techniques such as MRI and CT [244].  In a rat model of permanent 

cerebral ischemia with or without post-stroke exercise, a [18F]FDG PET study of metabolism in both 

the damaged and undamaged cortical hemispheres has demonstrated that exercise can accelerate a 

reverse in the hypometabolism caused by ischemia [245].  [18F]FDG PET studies have also been used 

to demonstrate functional recoveries following cerebral ischemia by treatments with the natural 
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product scutellarin [246], the herbal medicine Danhong [247] and after transplantation of induced 

pluripotent stem cells [248].  In rat brain, GLUT1 overexpression occurs rapidly and widely in 

microvessels and parenchyma following global cerebral ischemia, which may be associated with an 

immediate early-gene form of response to cellular stress [249], and cerebral hypoxia-ischemia leads to 

overexpression of GLUT1 in both damaged and undamaged hemispheres during both early and late 

stages in the recovery period [250,251].  Diabetic conditions combined with cerebral ischemia 

produced an even higher overexpression of GLUT1, although expression tended to decrease with 

increased blood glucose levels.  It was therefore considered that in the treatment of diabetic patients 

with cerebral ischemia, blood glucose control should not be too strict, otherwise the up-regulation of 

GLUT1 induced by ischemia may not meet the requirements of energy metabolism the in cells [252].  

The upregulation of cerebral GLUT1 (and GLUT3) is considered as a potential preventative 

neuroprotive therapy for ischemia [253].  Because hyperglycemia is an indicator of severe stroke and 

this promotes further ischemia in the brain, cerebral GLUTs are also considered as a therapeutic target 

for post ischemic stroke treatments [254]. 

 

5. GLUT1 in [18F]FDG PET imaging of cardiovascular diseases 

5.1. Introduction 

Cardiovascular diseases include all those of the heart and blood vessels such as coronary heart disease, 

congenital heart disease, peripheral arterial disease and stroke.  These can be linked to each other and 

to underlying conditions such as atherosclerosis, cardiac sarcoidosis, inflammation and infection.  

[18F]FDG PET imaging can be used to monitor blood flow to the heart muscle, identify the effects of a 

heart attack on areas of the heart, distinguish viable tissue from scar tissue, locate regions that may 

benefit from surgical procedures and examine changes in blood flow and/or glucose metabolism that 

occur in a range of cardiovascular diseases and underlying conditions.  [18F]FDG PET can also be used 

to assess function and identify and monitor sites of infection in implantable cardiac devices and in 

prosthetic valves.  Because myocardial glucose consumption can have wide variation under different 

normal metabolic and physiological states, which can overlap with changes in glucose metabolism 

under pathologic conditions, a careful regulation of the metabolic environment is required for 

performing cardiovascular [18F]FDG PET imaging [255].  It is beyond the scope of this review to 

include all published results for the PET imaging of cardiovascular diseases using [18F]FDG, so the 

remainder of this section will consider the roles of GLUT1 in [18F]FDG PET imaging of some 

common and pertinent cardiovascular diseases and underlying conditions and of infections in 

implantable devices and prosthetics. 
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5.2. Heart failure and myocardial ischemia 

Left ventricular dysfunction with subsequent heart failure constitutes the final common pathway for a 

number of cardiac disorders.  In patients with left ventricular dysfunction and an adequate amount of 

hibernating myocardium, coronary revascularisation may provide a significant improvement in left 

ventricular contractility along with a better long-term prognosis.  Alongside other imaging techniques, 

[18F]FDG PET can be used to examine the left ventricular myocardium for residual glucose 

metabolism and reversible loss of systolic function.  This assessment of myocardial viability is 

essential for determining the route of action and likelihood of survival in patients with heart failure 

[256-261].  Right ventricle dysfunction in heart failure is also associated with metabolic changes 

including an increase in right ventricle [18F]FDG accumulation, the magnitude of which is correlated 

with severity [262].  One of the characteristics of pulmonary arterial hypertension is metabolic 

remodelling of the right ventricle, which can lead to right ventricle failure.  Because this includes an 

increase in glycolysis, [18F]FDG PET is used for identifying pulmonary hypertension and right heart 

failure [263-265].  [18F]FDG PET is also used for assessing blood flow and metabolism in general 

myocardial ischemia and heart failure [256,266-268].  In line with the increased glucose metabolism, 

histochemical studies have shown that persistent myocardial ischemia increases GLUT1 expression in 

both ischemic and non-ischemic regions of the heart [269]. 

 

5.3. Inflammation 

Inflammation of cardiovascular tissues including inner surfaces of the heart such as valves (infective 

endocarditis), heart muscle (myocarditis), pericardium that surrounds the heart (pericarditis) or of 

blood vessels (vasculitis) may be a cause or symptom of other cardiovascular disorders.  Some of these 

inflammations are caused by bacterial or viral infections, autoimmune diseases, environmental toxins 

or adverse reactions to drugs.  Because the regions of inflammation have increased blood supply and 

rates of glycolysis, [18F]FDG PET has emerged as an important tool in the diagnosis and monitoring of 

these cardiovascular inflammations [270].  Infective endocarditis (IE) is usually caused by bacterial 

infection of the heart valves or lining of the endocardium.  A high rate of mortality means that rapid 

diagnosis of IE is essential followed by aggressive antibiotic and or/surgical treatment.  Alongside 

other techniques such as CT, echocardiography and MRI, [18F]FDG PET is important in the early 

diagnosis of IE [271-275].  Related to IE, the bacterial or fungal infection of implantable cardiac 

devices and prosthetic valves has potential fatal consequences unless diagnosed at an early stage 

followed by urgent antibiotic therapy, device extraction or surgical intervention.  Diagnosis and 

identification of the infection site is challenging, but [18F]FDG PET is useful for detecting 
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inflammatory cells early in the infection process before more serious morphologic damages occur 

[276-282].  An [18F]FDG PET-CT image from a patient with a cardiac device infection is shown in 

Figure 11, which reveals enhanced [18F]FDG uptake on both the generator and pacemaker lead [274]. 

 

 
Figure 11. [18F]FDG PET-CT image of cardiac device infection.  An [18F]FDG PET-CT image from a patient with a 

cardiac device infection is showing an enhanced [18F]FDG uptake on both the generator and the pacemaker lead (arrows).  

This research was originally published in European Heart Journal.  Bruun NE, Habib G, Thuny F, Sogaard P. Cardiac 

imaging in infectious endocarditis. Eur Heart J. 2014; 35(10): 624-632 [274]. © by European Society of Cardiology. 

 

Myocarditis is most often due to infection by common viruses or a hypersensitivity response to 

medications [283].  [18F]FDG PET has been used in the detection of myocarditis, for example due to 

infection by Epstein Barr virus [284,285].  Pericarditis may be caused by bacterial, viral or fungal 

infection or can present post-infarction (within 24 hours of a heart attack), or weeks to months after a 

heart attack (Dressler's syndrome).  [18F]FDG PET has been used for the visualisation of pericarditis 

[286,287], which includes applications in the diagnosis of postmeningococcal pericarditis [288], 

chemotherapy-induced pericarditis [289] and focal pericarditis in a huge heart [290].  [18F]FDG PET 

has also been used to identify tuberculous pericarditis, a rare extra-pulmonary manifestation of 

tuberculosis, monitor its response to antituberculosis therapy and to differentiate acute tuberculosis 

from idiopathic pericarditis [291-295].  One case of suspected pericarditis investigated by [18F]FDG 

PET actually turned out to be large vessel vasculitis [296].  The non-specific nature of [18F]FDG PET 

makes whole body scans especially suited to the diagnosis and monitoring of large vessel vasculitis, 

which can present with non-specific signs and symptoms [297-300].  A common form of vasculitis is 

giant cell arteritis, which shows a close clinical association with the musculoskeletal inflammatory 

disorder polymyalgia rheumatica [301,302].  High [18F]FDG uptake is seen in the large vessels 

including aorta, subclavian, carotid, iliac and femoral arteries.  Takayasu arteritis, a chronic 
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nonspecific granulomatous vasculitis affecting aorta and its main branches, coronary and pulmonary 

arteries, is also diagnosed and monitored using [18F]FDG PET alongside other imaging techniques 

[303-306].  Although GLUT1 clearly has an important role in the uptake of [18F]FDG in these PET 

studies of inflammatory cardiovascular conditions, no investigations of a correlation with patterns of 

GLUT1 expression or activity have been reported. 

 

5.4. Cardiac sarcoidosis 

Sarcoidosis is a condition involving abnormal collections of inflammatory cells or granulomas that can 

form nodules in multiple organs.  The cause of sarcoidosis is still not fully understood, but it appears to 

be triggered by infectious or environmental agents that act as antigens.  These antigens are thought to 

trigger helper inducer T cells into forming the granulomas.  At the early inflammation stage, the 

granuloma lesions contain mononuclear phagocytes and CD4 positive T cells with a T helper Type 1 

response, secreting interleukin-2 and interferon-.  At the later fibroblastic stage, there is a shift to a T 

helper type 2 response which produces anti-inflammatory effects and results in tissue scarring 

[307,308].  Sarcoidosis can affect any region of the heart, but most often the myocardium, and lead to 

other cardiac disorders such as heart block, ventricular arrhythmias, congestive heart failure, 

pulmonary hypertension and ventricular aneurysms.  Hence, cardiac sarcoidosis has a poor prognosis 

so an early and accurate diagnosis is important for achieving any successful outcome.  Due to the non-

specific clinical symptoms of the disease, erratic myocardial involvement and uncertainty of diagnostic 

tests the detection and management of cardiac sarcoidosis is challenging [309,310].  [18F]FDG PET is 

emerging as a useful tool alongside other imaging techniques for the examination of cardiac 

sarcoidosis [311-316], an example is shown in Figure 12.  The variable physiological uptake of 

[18F]FDG into the myocardium complicates the detection of enhanced [18F]FDG uptake into 

sarcoidosis lesions so a long fasting state and other strict preparations are necessary for the most 

sensitive and accurate assessment [311,317-319].  Under fasting conditions normal myocardial cells 

use free fatty acids for up to 90% of their oxygen consumption [320], which therefore suppresses 

glycolytic acitivity and the uptake of [18F]FDG.  In recent years [18F]FDG PET has improved the 

detection and monitoring of cardiac sarcoidois, but it is suggested that more developments are required 

in distinguishing physiological uptake from disease regions and coordinating the effects of treatments 

with assessment of disease state [317]. 
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Figure 12. [18F]FDG PET imaging of cardiac sarcoidosis.  Whole body (A) and transverse (B) [18F]FDG PET images 

revealing enhanced [18F]FDG uptake into cardiac sarcoidosis granuloma lesions in the heart.  The whole body image also 

reveals other sarcoidosis lesions with enhanced [18F]FDG uptake in chest, lymph nodes and subcutaneous tissue.  An image 

of a non-caseating sarcoidosis granuloma is also shown (C).  This research was originally published in BioMed Research 

International.  Orii M, Imanishi T, Akasaka T. Assessment of cardiac sarcoidosis with advanced imaging modalities. 

Biomed Res Int. 2014; 2014: 897956 [317]. © 2014 Makoto Orii et al. 

 

5.5. Atherosclerosis 

Atherosclerotic cardiovascular diseases, including coronary heart disease, myocardial infarction and 

stroke, are the most common cause of death and disability in the developed world.  The progressive 

inflammation and potential rupture of atherosclerotic plaques in arterial walls is due to infiltration by 

macrophages.  Rupture can lead to the formation of a blood clot, which may block the artery resulting 

in a heart attack or it can be carried downstream causing a stroke.  Because glucose uptake and 

metabolism by macrophages is significantly higher than in other plaque cells, [18F]FDG PET is an 

important tool for identifying vulnerable atherosclerotic plaques, assessing risk factors to future 

cardiovascular events and monitoring the effects of anti-atherosclerotic treatments such as anti-

inflammatory drugs and statins, lifestyle changes or surgery [321-325].  Indeed, [18F]FDG PET has 

already been used in clinical drug trials for treatments of atherosclerosis [326,327].  The inflammation 

in atherosclerotic plaques detected by [18F]FDG PET also has a direct positive correlation with 

neovascularisation detected by dynamic contrast-enhanced-MRI [328].  The determinants of [18F]FDG 

uptake in atherosclerotic plaques have been the subject of a number of studies and commentaries, 

including extra considerations for individuals with type 2 diabetes [329,330].  One study suggests that 

[18F]FDG PET detects the early stage of foam cell formation in atherosclerosis [331] and another 

suggests that [18F]FDG uptake reflects hypoxia-stimulated macrophages rather than just an 
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inflammatory effect and that cytokine-activated smooth muscle cells may also contribute to the 

[18F]FDG uptake [332].  In relation to atherosclerotic inflammation, it has been shown that oxidized 

low-density lipoprotein is a strong stimulator of macrophage [18F]FDG uptake and glycolysis through 

upregulation of GLUT1 and hexokinase expression.  This metabolic response is mediated by Nox2-

dependent reactive oxygen species generation that promotes HIF-1α activation [333].  Some novel 

variations and alternatives to [18F]FDG PET have been developed for assessing atherosclerotic 

plaques.  [18F]Sodium fluoride has been used as an alternative PET tracer and novel marker of plaque 

biology in terms of calcification.  The [18F]sodium fluoride tracer is not hampered by physiological 

myocardial activity in the same way as [18F]FDG analysis of inflammation and it shows potential for 

the assessment of plaque vulnerability and future cardiovascular risk [334].  An example of a 

combined [18F]FDG and [18F]sodium fluoride PET study of atherosclerosis is shown in Figure 13. 

 

 

Figure 13. PET-CT analysis of an atherosclerotic plaque in the ascending aorta.  Transaxial CT (A), [18F]FDG PET (B), 

[18F]sodium fluoride PET (C) and fused [18F]FDG/[18F]sodium fluoride PET-CT images (D) of an atherosclerotic plaque in 

the ascending aorta are shown.  The enhanced uptake of [18F]FDG coincides with calcification but not with [18F]sodium 

fluoride accumulation.  [18F]FDG uptake adjacent to the esophagus represents activity spilled over from the esophageal 

wall.  Short arrow = calcification; long arrow = tracer uptake.  This research was originally published in JNM.  Derlin T, 

Tóth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, 

active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer 

PET/CT study. J Nucl Med. 2011; 52(7): 1020-1027 [335].  © by the Society of Nuclear Medicine and Molecular Imaging, 

Inc. 
 

A non-radioactive assay of atherosclerotic plaque inflammation in a mouse model has been 

developed based on mass spectrometry detection of trapped FDG-6-phosphate and of cholesterol.  

FDG-6-phosphate was accumulated in atherosclerotic lesions from arteries and anti-atherosclerotic 

effects were seen following treatment with the liver X receptor agonist T0901317 [336].  2-Deoxy-2-

[18F]fluoro-D-mannose or [18F]FDM has been used as an alternative to [18F]FDG for PET imaging of 

atherosclerosis [337].  [18F]FDM is suitable for this purpose because mannose is transported by 

GLUT1 and mannose receptors are expressed on a subset of the macrophage population in high-risk 
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atherosclerotic plaques.  In a rabbit model, there was comparable uptake of [18F]FDM and [18F]FDG in 

atherosclerotic lesions and uptake of [18F]FDM was proportional to the plaque macrophage population.  

FDM also restricted binding of anti-mannose receptor antibody to macrophages by approximately 

35%, so mannose receptors may be an additional target for imaging of plaque inflammation [337].  A 

novel system for dual-modality imaging of atherosclerotic plaques using the glucose probes [18F]FDG 

and fluorescent 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose (6-NBDG) has been 

developed.  The system allowed detection of both [18F]FDG and 6-NBDG taken up by mouse 

atherosclerotic plaques and demonstrates 6-NBDG as a promising fluorescent probe for detection of 

macrophage-rich atherosclerotic plaques [338]. 

 

6. Diabetic effects on PET imaging using [18F]FDG and roles of GLUT1 

6.1. Introduction 

Patients with unmanaged diabetes mellitus are likely to present with hyperglycemia along with an 

altered metabolism and distribution of [18F]FDG.  Hence, an underlying diabetic condition could 

hinder the detection and monitoring of other diseases using [18F]FDG PET.  Diabetes also has a direct 

association with other diseases, for example in accelerating atherosclerosis and dramatically increasing 

the risk of cardiovascular diseases.  [18F]FDG PET can be used to follow the altered metabolism and 

distribution of [18F]FDG caused by diabetes and monitor the effects of anti-diabetic drugs and new 

potential therapies such as activation of brown adipose tissue.  Although GLUT4 is the insulin-

regulated glucose transporter found primarily in adipose tissues and striated muscle, GLUT1 

polymorphisms are implicated as a cause in diabetic nephropathy and GLUT1 expression levels are 

altered in various tissues under diabetic conditions.  GLUT1 is also a therapeutic target for the 

suppression of some diabetic complications. 

 

6.2. Altered distribution of [18F]FDG in patients with diabetes 

The elevated glucose levels in patients with diabetes may cause an altered metabolism and distribution 

of [18F]FDG including competitive inhibition of [18F]FDG uptake in different tissues.  The altered 

distribution of [18F]FDG in type 2 diabetes under control of insulin or oral anti-diabetics include an 

increase in diffuse uptake along with a decrease in segmental uptake in colon, a significant increase in 

uptake in bowel and a significant decrease in cardiac uptake [339].  Type 2 diabetes is significantly 

associated with increased carotid wall [18F]FDG uptake in patients with known or suspected 

cardiovascular disease.  Obesity and smoking also have a significant association with increased 

[18F]FDG uptake in patients with diabetes [340].  [18F]FDG-PET also shows a significant association 
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between impaired glucose tolerance and type 2 diabetes with vascular inflammation in carotid 

atherosclerosis [341].  Dynamic triple-tracer PET studies using [15O]H2O, [11C]3-O-methyl-D-glucose 

and [18F]FDG have shown that the skeletal muscle insulin resistance associated with obesity and type 2 

diabetes involves a severe impairment of glucose transport and an impairment in the efficiency of 

glucose phosphorylation [342].  [18F]FDG-PET has been used to show how bariatric surgery modifies 

the metabolic pattern of the whole body and different tissues in slightly obese patients with type 2 

diabetes.  The effects of the surgery included a significant and stable increase in glucose uptake into 

skeletal and cardiac muscle along with lowered blood levels of both insulin and glucose, consistent 

with an improvement in glucose tolerance [343].  The insulin resistance that is a causal factor in pre-

diabetes and type 2 diabetes also increases the risk of developing Alzheimer’s disease.  Under 

conditions of hyperglycemia, which may be present in individuals with diabetes, the cerebral 

distribution of [18F]FDG is altered with some regions of decreased uptake resembling those of 

Alzheimer’s disease [344].  Furthermore, cerebral [18F]FDG-PET analysis of cognitively normal adults 

with pre-diabetes or early type 2 diabetes has shown an Alzheimer’s-like pattern of reduced glucose 

metabolism in frontal, parietotemporal and cingulate regions.  These metabolic alterations were 

associated with subtle cognitive impairments at the earliest stage of Alzheimer’s disease, even before 

the onset of mild cognitive impairment [345].  [18F]FDG PET can also be used for the diagnosis of 

diabetes-related infections, for example in the diabetic foot (Figure 14).  The precise localisation of 

increased [18F]FDG uptake allows accurate differentiation between osteomyelitis and soft-tissue 

infection [346]. 

 

 

Figure 14. [18F]FDG PET-CT diagnosis of diabetes-related osteomyelitis in the foot. Coronal (A) and transaxial (B) 

[18F]FDG PET images showing enhanced [18F]FDG uptake in the lateral region of the forefoot. A [18F]FDG PET-CT image 

(C) localises the enhanced [18F]FDG uptake to the head of the fourth metatarsal.  A CT scan shows normal bone structure 

in the corresponding area (D). Subsequent histopathic examination confirmed osteomyelitis in the soft tissues.  This 

research was originally published in JNM.  Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: 

initial experience with 18F-FDG PET/CT. J Nucl Med. 2005; 46(3): 444-449 [346]. © by the Society of Nuclear Medicine 

and Molecular Imaging, Inc. 
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6.3. Effects of diabetes on measuring [18F]FDG uptake in the diagnosis of other diseases 

A concern for performing [18F]FDG PET analyses under diabetic conditions is that elevated glucose 

levels or altered metabolism might hinder the detection and monitoring of other diseases, especially in 

oncologic imaging.  Along with changes in blood glucose levels, insulin and obesity, diabetes affects 

the distribution of [18F]FDG in muscle tissue and the brain.  Whilst tumoral uptake of [18F]FDG is not 

significantly affected, these other changes may influence the tumoral detection rate [347].  

Interestingly, it has been shown that high glucose levels at the time of the study but not diabetes may 

reduce the sensitivity of [18F]FDG-CT in the assessment of cancers and no significant impact on the 

false-negative rate was found in patients with infection and inflammatory processes with either 

diabetes or hyperglycemia [348].  In an [18F]FDG PET study of patients with localised esophageal 

cancer, glucose levels and diabetes had no influence on pretreatment detection, but diabetes did 

complicate interpretation of the response to treatment [349].  In another study, chronic hyperglycemia 

due to diabetes had no adverse affect on the [18F]FDG PET detection rate of various cancers.  

[18F]FDG uptake by the majority of tumours was maintained at a sufficiently high level for clinical 

diagnosis, except in the few cases of low [18F]FDG-avid tumours or small lesions of 15 mm or less in 

size  [350].  In comparison with normal patients, the accuracy of [18F]FDG PET detection of cervical 

cancer was not significantly reduced in patients with mild to moderate diabetes [351].  Although not 

always essential, different preparation procedures may be required for [18F]FDG PET imaging of 

patients with diabetes at the time of [18F]FDG injection in order to improve diagnostic scheduling and 

provide the most sensitive and accurate assessment [352,353].  For example, the poor image quality of 

[18F]FDG PET scans associated with patients that have uncontrolled diabetes can be improved by 

injecting ultrashort-acting insulin 60 minutes prior to the injection of [18F]FDG [354]. 

 

6.4. Effects of anti-diabetic drugs 

The effects of anti-diabetic drugs on glucose metabolism have been assessed using [18F]FDG PET 

imaging.  The biguanide metformin is the first-line drug for prevention and treatment of type 2 

diabetes, especially in overweight and obese patients.  Metformin works by helping to restore the 

body's proper response to insulin, suppressing glucose production by the liver and its absorption by the 

stomach/intestines.  This is usually used alongside diet and exercise lifestyle changes.  In type 2 

diabetic patients, metformin treatment significantly increases [18F]FDG uptake in the walls and lumen 

of the large intestine and, to a lesser extent, in the small intestine [355,356].  It may therefore be useful 

to cease metformin treatment before performing any oncologic [18F]FDG PET assessment of the intra-

abdominal region [355].  Indeed, the discontinuation of metformin treatment for two or three days is 
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sufficient for reducing the high intestinal [18F]FDG uptake induced by metformin [357,358].  In a 

model of diet-induced hyperinsulinemia associated with increased insulin receptor activation in 

tumours and with increased tumor [18F]FDG uptake, metformin abolished the diet-induced increases in 

serum insulin, tumor insulin receptor activation and tumour [18F]FDG uptake associated with the high 

energy diet.  These observations led to the suggestion that metformin could be considered in clinical 

trials as a treatment for cancers [359].  A later study showed that metformin produces a dose-

dependent increase in tumor [18F]FDG uptake while decreasing cell proliferation in colon cancer cells, 

suggesting that changes in [18F]FDG uptake following metformin treatment may be misleading.  PET 

imaging using 3'-deoxy-3'-[18F]-fluorothymidine was advocated as a promising alternative for 

correlating metformin treatment with tumour response [360].  A recent [18F]FDG PET study of the 

effects of metformin on cerebral metabolic changes in type 2 diabetes revealed significant increases in 

glucose metabolism in right temporal and frontal and left occipital lobe white matter and decreases in 

left parahippocampal gyrus, left fusiform gyrus and ventromedial prefrontal cortex [361]. 

 

6.5. Brown adipose tissue 

Brown adipose tissue (BAT) has recently emerged as a potential target in the treatment of obesity and 

type 2 diabetes.  The main function of BAT is to burn energy and glucose to generate body heat 

[362,363], this is in contrast to white adipose tissue which has a main function of energy storage.  BAT 

is especially abundant in newborns and in hibernating mammals where it is important for preventing 

hypothermia.  In adult humans, [18F]FDG PET imaging has shown that BAT is still present in the 

upper chest and neck and this becomes more metabolically active with exposure to cold and less active 

if an adrenergic beta blocker is administered before the scan.  [18F]FDG PET-CT is currently the most 

useful tool for the molecular imaging of BAT metabolic activity and its roles in human health and 

disease [364].  In performing [18F]FDG PET imaging of BAT in humans, factors such as outdoor 

temperature, age, sex, body mass index and diabetic status determine its abundance and [18F]FDG-

uptake activity [365].  Lower outdoor temperatures increase the abundance and metabolic activity of 

BAT whilst increasing age, obesity and diabetes have the opposite effect.  These variables are of 

course interlinked and so the decrease in BAT with increasing age may be a causative factor of middle-

age obesity.  Hence, maintaining or increasing the level of BAT may be a preventative measure or 

treatment for obesity and diabetes [365-367].  Prolonged fasting induces insulin resistance in 

peripheral tissues in order to prioritise glucose supply for the brain.  [18F]FDG PET measurements 

under fasting-induced insulin resistance conditions revealed a significant decrease in cold-induced 

BAT glucose uptake along with a decrease in non-shivering thermogenesis during cold stimulation.  
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Reduction of glucose uptake in BAT was due to impaired cellular glucose uptake and not due to 

decreased supply [368].  This study concluded that cold-induced activation of BAT may not be 

feasible for achieving glucose clearance by BAT under diabetic conditions.  [18F]FDG PET 

measurements of BAT glucose metabolism in mouse models showed a significant decrease in 

[18F]FDG uptake into BAT under conditions of both obesity and diabetes (Figure 15).  Treatment with 

a β3-adrenergic receptor (β3-AR) agonist reversed this trend to produce a significant increase in BAT 

[18F]FDG uptake in both obese and diabetic conditions, which was accompanied by significantly 

decreased blood glucose levels.  Treatment with the thyroid hormone levothyroxine also increased 

BAT [18F]FDG uptake under obese conditions but not under diabetic conditions.  Activation of BAT 

may therefore be a useful strategy in the treatment of obesity and diabetes [369].  This possibility has 

been confirmed by a recent [18F]FDG PET-CT study demonstrating activation of human BAT by the 

β3-AR agonist mirabegron (Figure 15) [370].  A new signalling pathway has also recently been 

revealed for β3-AR stimulation of GLUT1-mediated glucose uptake in BAT cells [371].  In addition to 

β3-AR stimulation of cAMP-mediated increases in GLUT1 transcription and de novo synthesis of 

GLUT1, there is also β3-AR stimulation of mTOR complex 2, which itself stimulates translocation of 

newly synthesized GLUT1 to the plasma membrane.  Both parts are essential for β3-AR-stimulated 

glucose uptake and this is independent of the classical PI3K/Akt pathway [371]. 
 

A B

Normal Obese Diabetes Placebo β3-AR agonist

 

Figure 15. Effects of obesity and diabetes on brown adipose tissue and its activation by β3-adrenergic receptor agonists.  

A. [18F]FDG microPET images of normal, obese and diabetic mice after cold stimulation on ice for 1 hour.  The arrows 

show the position of interscapular BAT uptake of [18F]FDG, which is decreased in the obese and diabetic mice.  Treatment 

with the β3-adrenergic receptor agonist BRL37344 significantly increased the BAT-to-liver ratio of [18F]FDG uptake in the 

obese and diabetic mice compared to controls (not shown).  This research was orgininally published in PLos One. © 2014 

Wu et al [369].  B. [18F]FDG PET images of a 21 year old man treated with a placebo or with the β3-adrenergic receptor 

agonist mirabegron.  Mirabegron acutely stimulates [18F]FDG uptake and BAT activity in multiple depots and is therefore a 

predictor of whole-body thermogenesis.  This research was originally published in Cell Metabolism.  Cypess AM, Weiner 

LS, Roberts-Toler C, Elía EF, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a β3-adrenergic 

receptor agonist. Cell Metab. 2015; 21(1): 33-38 [370]. © by Elsevier Inc. 
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6.6. Further roles of GLUT1 in diabetes and therapy 

Renal tubular glucose reabsorption is mediated by sugar transporters including GLUT1.  Glucose 

transport in the diabetic kidney is upregulated and has been implicated in the pathogenesis of 

progressive diabetic nephropathy [372].  Hyperglycemia, hypertension and activation of the renin-

angiotensin system are thought to be important in the development of the disease and expression levels 

of GLUT1 are elevated under conditions of hypertension and diabetic nephropathy [373,374].  

Polymorphisms of the GLUT1 gene are associated with susceptibility to diabetic nephropathy in both 

type 1 and type 2 diabetes [372,375-377].  Skeletal muscle GLUT1 expression and basal leg glucose 

uptake are reduced in type 2 diabetes [378].  The anti-ischemic drug mildronate, which suppresses 

fatty acid metabolism and increases glucose utilisation in myocardium, has also been shown to 

normalise the diabetes-induced upregulated expression levels of GLUT1 in kidneys, heart, muscle and 

liver [379].  Red blood cell glucose transport in patients with type 2 diabetes is decreased whilst the 

abundance of GLUT1 is apparently unchanged and its affinity for binding cytochalasin B is increased 

[380].  In contrast, adolescents with type 1 diabetes display reduced levels of GLUT1 in red blood cells 

and this has been considered as a contributing factor to the perturbed cognition in adolescents with 

type 1 diabetes [381].  The suppression of GLUT1 has been considered as a strategy for preventing 

diabetic complications, especially of diabetic retinopathy.  GLUT1 is the sole glucose transporter 

between blood and retina so it is an obvious target for reducing the high glucose levels in retina under 

conditions of diabetic retinopathy.  In an animal model of diabetes, treatment with the GLUT1 

inhibitors forskolin or genistein significantly reduced retinal glucose to the same levels as in non-

diabetics. Forskolin prevented early biomarkers of diabetic retinopathy, including elevation of 

superoxide radicals, increased expression of the chaperone β2 crystallin and increased expression of 

vascular endothelial growth factor [382].  GLUT1 is therefore a potential therapeutic target for the 

prevention of diabetic retinopathy. 

 

7. Conclusions 

This review has highlighted the important roles that facilitative transport protein GLUT1 plays in 

positron emission tomography (PET) imaging of human diseases using 2-deoxy-2-[18F]fluoro-D-

glucose ([18F]FDG) as the radiotracer.  [18F]FDG uptake is a marker of glucose transport and 

glycolytic activity and altered patterns in localised regions of tissues and organs are associated with 

certain diseases.  [18F]FDG PET imaging is now a routine clinical tool used in the diagnosis, 

monitoring and analysis of response to treatments for cancers, neurological disorders, cardiovascular 

diseases and underlying conditions such as atherosclerosis.  All of these can be affected by diabetes, 
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which alters the metabolism and distribution of [18F]FDG.  The effects of anti-diabetic drugs on 

glucose metabolism and activation of brown adipose tissue as a preventative measure or treatment for 

obesity and diabetes have been investigated using [18F]FDG PET.  Expression and/or activity levels of 

GLUT1 have direct affects on [18F]FDG uptake, which are controlled by the PI3K/AKT/mTOR 

signaling pathway, and can be increased or decreased under disease conditions.  Mutations in GLUT1 

are associated with GLUT1 deficiency syndrome and some epileptic disorders and single nucleotide 

polymorphisms in the GLUT1 gene are associated with a genetic susceptibility to some cancers and to 

diabetic nephropathy.  GLUT1 itself is a potential therapeutic target for the treatment of some human 

diseases.  Inhibition of GLUT1 expression and/or activity is a potential strategy for cancer therapy or 

GLUT1 could be used for the targeted transport of anticancer compounds into tumours.  Upregulation 

of GLUT1 expression is a potential approach for the prevention or treatment of some neurological 

disorders including multiple sclerosis and cerebral ischemia.  GLUT1 is also a potential therapeutic 

target for the suppression of some diabetic complications and obesity.  Development of such therapies 

targeting GLUT1 will benefit from analysis by [18F]FDG PET imaging. 
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Suggested reading 

The physiological FDG uptake of the myocardium can hamper the detection of myocarditis and 
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 The role of PET imaging with 18F-FDG in cancers has been described in this article, but some 

non-malignant lesions also show enhanced 18F-FDG uptake.  For a general overview of 18F-FDG 
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 Thyroid lesions with enhanced 18F-FDG uptake can be incidentally identified during 18F-FDG 

PET investigations of non-thyroid disorders, which are often due to benign adenomatoid nodules.  It is 

obviously important that such lesions are confirmed as benign or malignant.  Interestingly, GLUT1 

expression is not detected in benign nodules or in normal thyroid tissue, whilst it is frequently detected 

in thyroid cancers.  GLUT1 expression is therefore a potential clinical marker for distinguishing 

benign and malignant thyroid lesions.   
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Breast fibroadenomas are non-cancerous tumours composed of breast gland tissue and tissue that 

supports the breast gland tissue and these can show enhanced 18F-FDG uptake.  It is obviously 

important to distinguish such fibroadenomas from breast cancer.  GLUT1 expression is generally not 

detected in breast fibroadenomas and is therefore a useful marker to distinguish fibroademas from 

malignant tumours.   

For further reading please see the references given below. 

 Yamaguchi R, Futamata Y, Yoshimura F, Murakami N, Koufuji K, Kutami R, et al. 

Mastopathic-type fibroadenoma and ductal adenoma of the breast with false-positive 

fluorodeoxyglucose positron emission tomography. Jpn J Radiol. 2009; 27(7): 280-284. 

[CrossRef] [PubMed Abstract] 

 Hao LS, Ni Q, Jia GQ, Wang G, Qian K, Liu YJ, et al. Expression of glucose transporter 1 in 

human breast carcinoma and its clinical significance. Sichuan Da Xue Xue Bao Yi Xue Ban. 

2009; 40(1): 44-47. [PubMed Abstract] 

http://dx.doi.org/10.1097/MNM.0b013e328324b431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nucl+Med+Commun.+2009%3B+30(3)%3A+240-244.
http://dx.doi.org/10.1007/s12020-011-9470-5
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endocrine.+2011%3B+40(2)%3A+297-302.
http://dx.doi.org/10.1210/jc.2012-2390
http://www.ncbi.nlm.nih.gov/pubmed/?term=J+Clin+Endocrinol+Metab.+2012%3B+97(11)%3A+3866-3875
http://dx.doi.org/10.1089/thy.2012-0005
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thyroid.+2012%3B+22(9)%3A+918-925.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nucl+Med+Mol+Imaging.+2014%3B+48(2)%3A+121-129.
http://dx.doi.org/10.1111/ans.12834
http://www.ncbi.nlm.nih.gov/pubmed/?term=Flukes+S%2C+Lenzo+N%2C+Moschilla+G%2C+Sader+C.+Positron+emission+tomography-positive+thyroid+nodules%3A+rate+of+malignancy+and+histological+features.+ANZ+J+Surg.+2014.
http://dx.doi.org/10.1007/s11604-009-0335-2
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jpn+J+Radiol.+2009%3B+27(7)%3A+280-284.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sichuan+Da+Xue+Xue+Bao+Yi+Xue+Ban.+2009%3B+40(1)%3A+44-47.


Journal of Diagnostic Imaging in Therapy. 2015; 2(1): 30-102                    Patching 
 

 

http://dx.doi.org/10.17229/jdit.2015-0301-014       102 

ISSN: 2057-3782 (Online) 

 Makis W, Ciarallo A, Hickeson M, Derbekyan V. Rapidly growing complex fibroadenoma 

with surrounding ductal hyperplasia mimics breast malignancy on serial F-18 FDG PET/CT 

imaging. Clin Nucl Med. 2011; 36(7): 576-579. [CrossRef] [PubMed Abstract] 

 Adejolu M, Huo L, Rohren E, Santiago L, Yang WT. False-positive lesions mimicking breast 

cancer on FDG PET and PET/CT. AJR Am J Roentgenol. 2012; 198(3): W304-W314.  

[CrossRef] [PubMed Abstract] 

 Clement DS, van Diest PJ, Fernandez MA, Huijbregts JE, de Jong PA. Fibroadenoma of the 

breast with positive pet-scan. JBR-BTR. 2012; 95(3): 132-133. [PubMed Abstract] 

 Bertagna F, Evangelista L, Piccardo A, Bertoli M, Bosio G, Giubbini R, et al. Multicentric 

study on (18)F-FDG-PET/CT breast incidental uptake in patients studied for non-breast 

malignant purposes. Rev Esp Med Nucl Imagen Mol. 2015; 34(1): 24-29. [PubMed Abstract] 

 

Citation: Patching SG. Roles of facilitative glucose transporter GLUT1 in [18F]FDG positron emission 

tomography (PET) imaging of human diseases. Journal of Diagnostic Imaging in Therapy. 2015; 2(1): 

30-102. 

DOI: http://dx.doi.org/10.17229/jdit.2015-0301-014 

Copyright: © 2015 Patching SG. This is an open-access article distributed under the terms of the 

Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are cited. 

Received: 09 February 2015 | Revised: 26 February 2015 | Accepted: 27 February 2015 

Published Online 01 March 2015 www.openmedscience.com  

http://dx.doi.org/10.1097/RLU.0b013e318217569e
http://www.ncbi.nlm.nih.gov/pubmed/?term=Clin+Nucl+Med.+2011%3B+36(7)%3A+576-579
http://dx.doi.org/10.2214/AJR.11.7130
http://www.ncbi.nlm.nih.gov/pubmed/?term=AJR+Am+J+Roentgenol.+2012%3B+198(3)%3A+W304-W314
http://www.ncbi.nlm.nih.gov/pubmed/?term=JBR-BTR.+2012%3B+95(3)%3A+132-133
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rev+Esp+Med+Nucl+Imagen+Mol.+2015%3B+34(1)%3A+24-29.
http://dx.doi.org/10.17229/jdit.2015-0301-014
http://www.openmedscience.com/

