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Abstract The movement of physiologic nucleosides and nucleoside analogue drugs across biological membranes 

is mediated by nucleoside transport proteins.  In cancer, nucleoside transporters have an important role in 

maintaining the hyperproliferative state of tumours and are important targets for diagnostic and therapeutic agents 

in the detection, treatment and monitoring of cancers.  The nucleoside-based probe 3ꞌ-deoxy-3ꞌ-[18F]fluoro-L-

thymidine ([18F]FLT) has been developed for PET imaging of proliferating cancer cells, which is less prone than 2-

deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to non-specific effects.  [18F]FLT enters proliferating cells through 

nucleoside transporters, then becomes phosphorylated and blocks DNA synthesis, whilst also becoming trapped 

inside the cell.  Practicable and automated chemical syntheses of [18F]FLT have been developed, for which the 

most widely used radiolabelling precursor is the thymidine derivative 3-N-boc-5ꞌ-O-dimethoxytrityl-3ꞌ-O-nosyl-

thymidine.  [18F]FLT PET imaging has undergone feasibility studies and has been assessed in pre-clinical and 

clinical studies for the detection and diagnosis of cancers and in monitoring their response to treatments.  The roles 

of nucleoside transporters, especially ENT1, in the cellular uptake of [18F]FLT have been investigated. 
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1. INTRODUCTION: NUCLEOSIDE TRANSPORTERS AS 

CHEMOTHERAPEUTIC TARGETS AND BIOMARKERS OF 

DRUG RESPONSE
1 

ovement of physiologic nucleosides and hydrophilic 

nucleoside analogues across biological membranes is 

mediated by nucleoside transport proteins. Whilst 

physiologic nucleosides enter central salvage pathways in 

nucleotide biosynthesis, nucleoside analogue drugs are used 
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in the treatment of cancer and viral diseases.  In the case of 

cancer, nucleoside transport has an important role in 

maintaining the hyperproliferative state of most tumours 

and is therefore an important target for diagnostic and 

therapeutic agents in the detection, treatment and 

monitoring of cancers.  Indeed, the clinical efficacy of 

anticancer nucleoside analogue drugs depends on a 

complex interdependence of transporters mediating entry of 

drugs into cells, efflux mechanisms that remove drugs from 

intracellular compartments and cellular metabolism to 

active metabolites [1-6]. 

In humans, two solute carrier gene families (SLC28 

and SLC29) are foremost responsible for the uptake of 

nucleosides and nucleoside analogues into cells [7-11].  The 

SLC28 human concentrative nucleoside transporter (hCNT) 

family contains three members that mediate unidirectional 

transport of nucleosides into cells against their 

concentration gradient driven by a downward sodium 
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gradient that moves in the same direction (symport).  

hCNTs are high affinity transporters found predominantly 

in intestinal and renal epithelia and also in other specialised 

cell types.  hCNT1 and hCNT2 have preferences for 

pyrimidine and purine nucleosides, respectively, whilst 

hCNT3 has broad nucleoside selectivity [12-15].  The 

SLC29 human equilibrative nucleoside transporter (hENT) 

family contains four members that mediate bidirectional 

unenergised transport of nucleosides down their 

concentration gradient (facilitated diffusion).  hENTs are 

widely distributed in most, possibly all, cell types and 

hENTs 1-3 have broad specificity for both purine and 

pyrimidine nucleosides.  hENT4, also known as PMAT, is 

uniquely selective for adenosine and also transports a 

variety of organic cations [16-20].  Some nucleoside-

derived drugs can also interact with and be translocated by 

members of the SLC22 gene family, which include organic 

anion transporters (OATs), organic cation transporters 

(OCTs) and organic carnitine and zwitterion transporters 

(OCTNs) [9,21-25]. 

The pyrimidine nucleoside analogue gemcitabine (2',2'-

difluorodeoxycytidine, trade name Gemzar) (1) is widely 

used as a first-line chemotherapeutic drug in the treatment 

of various cancers including bladder cancer, breast cancer, 

non-small cell lung cancer, ovarian cancer and pancreatic 

cancer.  Unfortunately, there is often rapid development of 

either de novo or induced drug resistance, which 

significantly limits the effectiveness of gemcitabine 

chemotherapy. 

 

 
 

Whilst the cytotoxic effects of gemcitabine are exerted 

following phosphorylation and then inhibition of DNA 

synthesis, it must first enter cells through nucleoside 

transporters, especially the ubiquitous hENT1.  Hence, 

hENT1 expression and activity has been identified as an 

important prognostic biomarker in gemcitabine-treated 

cancers and therefore as a predictive biomarker of 

gemcitabine efficacy.  This is particularly true of pancreatic 

cancer, where high expression of hENT1 is associated with 

increased overall survival and disease-free survival in 

patients treated with gemcitabine [26-30].  It therefore 

follows that a deficiency in hENT1 confers resistance to the 

cytotoxicity of gemcitabine [31-34] and approaches have 

been explored to overcome hENT1 deficiency.  For 

example, upregulation of hENT1 expression in pancreatic 

cell lines by indole-3-carbinol enhanced the efficacy of 

gemcitabine [35].  Functionalised lipophilic nanoparticles 

have also been developed for delivery of gemcitabine into 

cells that bypass nucleoside transporters [36,37].  In 

addition to gemcitabine, other nucleoside analogues have 

been used and explored as chemotherapeutic drugs [38-41]. 

 
2. PET IMAGING USING 3ꞌ-DEOXY-3ꞌ-[18F]-

FLUORO-L-THYMIDINE 

 

2.1. Overview 

Positron emission tomography (PET) is a non-invasive 

clinical nuclear medicine technique routinely used to 

produce two- or three-dimensional images of the body for 

diagnosing and monitoring a wide range of human diseases.  

The PET system detects pairs of gamma rays emitted 

indirectly by a short-lived positron emitting radionuclide 

(or radiotracer), which is introduced into the body on a 

biologically active molecule [42].  Because PET images 

directly reflect in vivo tissue physiology and metabolism, 

one of their foremost uses is in the detection of proliferating 

cancer cells and monitoring their response to treatments.  

Indeed, the early metabolic changes associated with cancers 

can be detected by PET imaging before more advanced 

morphologic changes are detected by anatomic imaging 

techniques such as computed tomography (CT) and 

magnetic resonance imaging (MRI).  This allows earlier 

diagnosis and earlier intervention with appropriate 

treatments that are more likely to have a successful 

outcome.  By far the most commonly used radiotracer in 

PET imaging is 2-deoxy-2-[18F]fluoro-D-glucose 

([18F]FDG) (2) [42,43].  In the case of imaging cancers, 

however, [18F]FDG is not necessarily the most appropriate 

radiotracer to use because it can accumulate non-

specifically to produce false-positive findings [44].  For 

example, enhanced uptakes of [18F]FDG also occur in 

infection and in inflamed cells and lesions as well as in 

necrotic cells [45,46].  Alternative nucleoside-based probes 

that are less prone to non-specific effects have have 

therefore been developed for imaging tumour proliferation 

to use alongside [18F]FDG [44,47], the most successful 

being 3ꞌ-deoxy-3ꞌ-[18F]fluoro-L-thymidine ([18F]FLT) (3) 

[48]. 
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2.2. Cellular trapping of [18F]FLT 

Like thymidine (4), [18F]FLT is transported into cells by 

nucleoside transporters.  Once inside the cell, [18F]FLT is a 

substrate for thymidine kinase I (TK1) and is 

phosphorylated but is not incorporated into DNA.  

Phosphorylated [18F]FLT cannot exit the cell and [18F]FLT 

is not a substrate for thymidine phosphorylase and so is not 

significantly degraded in vivo and is retained inside the cell 

(Figure 1).  TK1 is a key enzyme that is upregulated in 

cancer cells and, in agreement with separate studies [49,50], 

it is assumed that the concentration of [18F]FLT inside cells 

is proportional to TK1 activity and therefore to cellular 

proliferation.  One of the characteristics of tumour cells is 

an unchecked proliferation and it is important to measure 

the proliferation rate of cancer lesions to help differentiate 

benign from malignant tumours and to characterise 

malignant tumours amongst normal tissues.  A further 

advantage of [18F]FLT is that it is only a substrate for TK1 

and not for mitochondrial TK2, making it a more specific 

radiotracer compared with other fluorinated nucleoside 

analogues for cellular proliferation. 

 

 

 
Figure 1. Cellular uptake and fate of thymidine and [18F]FLT.  In the thymidine salvage pathway, both thymidine (4) and [18F]FLT (3) undergo uptake into 

cells by nucleoside transporters (NT) and are initially phoshorylated by thymidine kinase 1 (TK1) and then further phosphorylated by thymidine monophosphate 

kinase (TMPK) and thymidine diphosphate kinase (TDPK).  There is also a de novo synthesis of TMP by thymidylate synthase (TS) from deoxyuridine 

monophoshate (dUMP).  Whilst phosphorylated thymidine is incorporated into DNA, phosphorylated [18F]FLT is not a substrate for DNA polymerase (DP) or 

nucleoside transporters and therefore becomes trapped inside the cell.  Similarly, [18F]FLT is not a substrate for thymidine phosphorylase (TP) and so does not 

undergo significant degradation to thymine and ribose-1-phosphate (R1P).  [18F]FLT is ultimately metabolised to its glucuronide by glucuronyl transferase in the 

liver and excreted by the kidney.  Some cancer drugs inhibit the glucuronosyl transferase reaction, however. 

 

2.3. Synthesis and quality control of [18F]FLT 

Radiosynthesis of [18F]FLT was first reported by Wilson et 

al. [51] using a thymidine precursor (5) with trityl and 

mesyl protecting groups at the 5ꞌ- and 3ꞌ-hydroxyl positions, 

respectively, and this was treated with [18F]potassium 

fluoride (Scheme 1).  Significant developments towards a 

more practicable method to produce [18F]FLT for clinical 

PET imaging were later made by Grierson and Shields [52-

55].  Their improved method made minimal use of 

specialised materials and apparatus and included a three-

step radiosynthesis producing [18F]FLT with a 

radiochemical yield (at end of bombardment) of 13% and 

an end of synthesis yield of 7% over 94 minutes [56].  The 

method used a nosylate (4-nitrobenzenesulphonate) ester as 

the radiolabelling precursor [1-(2-deoxy-3-O-(4-

nitrobenzenesulfonyl)-5-O-(4,4ꞌ-dimethoxy-trityl)-β-D-

threo-pento-furanosyl)-3-(2,4-dimethoxybenzyl)thymine] 

(12) that was synthesised in seven steps from thymidine (4) 

in an overall yield of 17% (Scheme 2).  Nucleophilic 

displacement of (12) with [18F]fluoride was followed by 

deprotection with ceramic ammonium nitrate (CAN) and 

then product isolation by C-18 preparative HPLC.  Use of 

CAN for deprotection resulted in formation of precipitates 

such that filtration was required before HPLC, which is not 
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conducive with synthesis automation.  An alternative 

approach using an anhydro derivative as the radiolabelling 

precursor [2,3′-anhydro-5′-O-(4,4′-dimethoxytrityl)-

thymidine] (14) achieved an end of synthesis [18F]FLT 

yield of 5.6 ± 1.4% over 90-140 minutes [57].  Whilst this 

method had a simpler precursor synthesis, radiolabelling 

reaction and workup of [18F]FLT, the requirement for a 

high boiling point reaction solvent (DMSO) compromised 

HPLC isolation of [18F]FLT.  Using the same anhydro 

precursor (14) and single neutral alumina column 

purification, a fully automated and simplified synthesis of 

[18F]FLT produced an uncorrected radiochemical yield of 

8.48 ± 0.93% (n = 5) in a total time of 68 ± 3 minutes and a 

radiochemical purity of  >95% [58].  This method obviated 

the need for HPLC purification and the product was tested 

for safe levels of residual aluminium and DMSO. 

 

 
 
Scheme 1. Synthesis of [18F]FLT (3) using a protected thymidine 

radiolabelling precursor (5) and [18F]potassium fluoride. 

 

 

 
 

New radiolabelling precursors were assessed using 

different protecting groups at the 5ꞌ-hydroxyl position [trityl 

(Tr) and 4,4'-dimethoxytrityl (DMTr)] and different 

electrophilic centres at the 3ꞌ-carbon [methylsulfonyl 

(mesyl/Ms), p-toluenesulfonyl (tosyl/Ts) and 4-

nitrobenzenesulfonyl (nosyl/Ns) groups].  These precursors 

also had 3-N-Boc-protection, which avoided use of CAN 

and the resultant precipitates, thus enabling use of an 

automated synthesis module (Scheme 3) [59].  The 

nosylated precursors proved most successful for 

radiolabelling with 18F and best results were obtained using 

3-N-boc-5′-O-dimethoxytrityl-3′-O-nosyl-thymidine (15) 

with an [18F]FLT yield (at end of bombardment) of 19.8% 

and an end of synthesis yield of 11.7% over 85 minutes.  

Using the same radiolabelling precursor (15), various 

[18F]fluorination and purification conditions were assessed 

for achieving a higher radiochemical yield of [18F]FLT [60].   

Purification of the reaction mixture using an Alumina N 

Sep-Pak cartridge before HPLC application significantly 

increased the radiochemical yield to 42 ± 5.4% (decay-

corrected) in under 60 min with a radiochemical purity of  

>97%.  Again using precursor 15, a fully automated method 

for synthesis of [18F]FLT was developed by modifying a 

commercial synthesiser for [18F]FDG that uses disposable 

cassettes [61].  [18F]FLT yields (decay corrected) of 50.5 ± 

5.2% (n = 28) and 48.7 ± 5.6% (n = 10) were obtained 

using 3.7 and 37.0 GBq of [18F]fluoride starting activity, 

respectively, in 60.0 ± 5.4 minutes including HPLC 

isolation.  A simplified and fully automated synthesis of 

[18F]FLT was developed using a PET-MF-2V-IT-I 

[18F]FDG synthesis module by a one-pot two-step reaction 

procedure.  The method included nucleophilic fluorination 

of 15 with [18F]fluoride, followed by hydrolysis of the 

protecting group with 1.0 M HCl in the same reaction 

vessel and purification with SEP PAK cartridges instead of 

HPLC [62].  The corrected [18F]FLT radiochemical yield 

was 23.2 ± 2.6% (n = 6) and the radiochemical purity was 

>97% obtained in a total time of 35 minutes.  It was also 

discovered that nucleophilic fluorination of 15 using a 

protic solvent produced an improved radiochemical yield of 

[18F]FLT.  Reaction in t-butanol using an automated 

synthesis module led to an [18F]FLT radiochemical yield of 

60.2 ± 5.2% after HPLC purification [63]. 

The 3-N-Boc-protected compound 15 remains the most 

commonly used radiolabelling precursor for [18F]FLT 

synthesis and is commercially available at GMP grade.  

Indeed, [18F]FLT suitable for microPET studies has been 

efficiently synthesised from 15 using an electrowetting-on-

dielectric digital microfluidic chip [64] and an automated 

and efficient radiosynthesis of [18F]FLT using a low amount 

of 15 (5 mg) has been developed, achieving a corrected 

radiochemical yield of 54% in a time of 52 minutes [65]. 

It is clear that the radiosynthesis of [18F]FLT can lead 

to many complex and potentially toxic side-products.  

According to the Society of Nuclear Medicine and 

Molecular Imaging (SNMMI), the NIH requires an 

[18F]FLT radiochemical purity of no less than 95% and no 

more than 5 mcg of nonradioactive FLT and no more than 5 

mcg of other UV-absorbing impurities 

http://interactive.snm.org/docs/PET_PROS/FLT_07-11-

12%20Final.pdf.  [18F]FLT is therefore subject to stringent 

tests of quality control and biological assessment [66,67]. 
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Scheme 2. Synthesis of [18F]FLT (3) from thymidine (4) using a nosylated radiolabelling precursor (12).  a. 2 equiv. DIAD/TPP, MeCN, <215 C, then H2O; b. 

LiOH (1 equiv.)/H2O, then H1-resin; c. acetone/PPTS (cat), reflux; d. 2,4-DMBnCl, K2CO3/MEK, reflux, phase transfer catalyst; e. EtOH-H2O, PPTS (cat), 

reflux; f. DMTrCl, pyr, rt; g. 4-NBS-Cl/AgOTf, pyr, 0 C; h. K2CO3/KRY(2.2.2)/[18F]fluoride (n.c.a.), MeCN, 100 C, 10 min; i. CAN, MeCN-EtOH-H2O 

(4:1:1), 100 C, 3 min; j. C-18 HPLC. 

 

 

 

 
 

Scheme 3. Radiolabelling precursor for synthesis of [18F]FLT (3).  a. [18F]fluoride, 100 C, 10 min; b. CAN, 3 min then C-18 HPLC. 
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2.4. Feasibility studies for measuring tumour proliferation 

using [18F]FLT 

Early prospective and feasibility studies were highly 

supportive of [18F]FLT as a PET radiotracer for measuring 

tumour proliferation, many of which performed direct 

comparisons of [18F]FLT and [18F]FDG uptake and 

correlations with immunohistochemistry results.  For 

example, in a validation study for [18F]FLT PET imaging of 

proliferation in early stage non-small cell lung cancer, there 

was excellent correlation of [18F]FLT uptake with 

immunohistochemistry marker of cell proliferation Ki-67 

values and flow cytometry results [68].  In a separate 

prospective PET study of newly diagnosed lung nodules, 

[18F]FLT uptake correlated significantly better with 

proliferation of lung tumours than did uptake of [18F]FDG, 

suggesting that it might be more useful as a selective 

biomarker for tumour proliferation [69].  PET imaging of 

cell proliferation in colorectal cancer using [18F]FLT and 

[18F]FDG showed a statistically significant positive 

correlation between SUVs of tumours visualised with 

[18F]FLT and the corresponding immunohistochemistry 

results, whilst no such correlation was demonstrated with 

[18F]FDG avid lesions [70].  In a study investigating the 

feasibility of [18F]FLT PET imaging for detection and 

grading of soft tissue sarcoma at the extremities, the method 

was successful in visualising cell proliferation and in 

differentiating between low-grade and high-grade lesions 

(Figure 2).  The uptake of [18F]FLT correlated with the 

proliferation of soft tissue sarcoma [71].  In a comparative 

study for imaging laryngeal cancer with [18F]FLT and 

[18F]FDG, the numbers of cancers detected with both 

tracers were equal and the uptake of [18F]FDG was higher 

than that of [18F]FLT [72].  In a study that directly 

compared [18F]FLT and [18F]FDG for imaging proliferation 

in brain tumours of the same patients, [18F]FLT was more 

sensitive than [18F]FDG for imaging recurrent high-grade 

tumours (Figure 3), it correlated better with 

immunohistochemistry Ki-67 values and was a more 

powerful predictor of tumour progression and survival [73].   

 
Figure 2. Images of soft tissue carcinomas.  A. MRI (A1) and [18F]FLT 

(A2) images of a low-grade soft tissue sarcoma.  B. MRI (B1) and 

[18F]FLT (B2) images of a high-grade soft tissue sarcoma.  The MRI 

images of both patients demonstrate a heterogeneous tumour.  [18F]FLT 

uptake in the high-grade soft tissue sarcoma is higher than in the low-grade 

soft tissue sarcoma, however.  This figure was reproduced with permission 

from Cobben et al. (2004) [71]; copyright © 2004 by American 

Association for Cancer Research. 

 

 
Figure 3. Images of a newly diagnosed glioblastoma.  A. MRI image 

(contrast-enhanced T1-weighted image) showing a large area of contrast 

enhancement in the right frontal lobe. Both [18F]FDG PET (B) and 

[18F]FLT PET (C) show increased uptake in same area.  This figure was 

reproduced with permission from Chen et al. (2005) [73]; copyright © 

2005 by Society of Nuclear Medicine and Molecular Imaging. 

 

More recently, a study investigating the performance of 

cellular metabolism imaging with [18F]FDG versus cellular 

proliferation imaging with [18F]FLT for detecting cervical 

lymph node metastases in oral/head and neck cancer was 

performed.  Whilst [18F]FLT showed better overall 

performance for detecting lymphadenopathy on qualitative 

assessment within the total nodal population, [18F]FDG 

15
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performed better for pathologic discrimination within the 

visible lymph nodes [74].  [18F]FLT PET imaging has been 

assessed in a range of further pre-clinical and clinical 

studies for the detection and diagnosis of cancers and in 

monitoring their response to treatments.  A comprehensive 

overview of these studies is beyond the scope of this work, 

so the reader is referred to recent review articles on this 

theme [75-80]. 

 

3. NUCLEOSIDE TRANSPORTERS IN [18F]FLT PET 

IMAGING OF CANCER 

A number of studies have investigated the roles of 

nucleoside transporters, especially hENT1, in measuring 

cell proliferation of cancers using [18F]FLT PET.  One of 

the first studies implicating a role for ENT1 in uptake of 

[18F]FLT into cancer cells was an assessment of [18F]FLT 

PET imaging for early measurement of thymidylate 

synthase inhibition in tumours [81].  Radiation-induced 

fibrosarcoma-1 tumor-bearing mice, injected with the 

thymidylate synthase inhibitor 5-fluorouracil, were imaged 

by [18F]FLT PET 1 to 2 hours after treatment (Figure 4).  

Parallel measurements included whole-cell assays 

implicating a functional role for ENT1, in which there was 

an increase in ENT1-binding sites per cell from 49,110 in 

untreated cells to 73,142 (P = 0.03) in cells treated with 5-

fluorouracil (10 g/ml, 2 hours), without a change in 

transporter affinity (P = 0.41).  It was concluded that 

[18F]FLT PET can measure thymidylate synthase inhibition 

as early as 1 to 2 hours after treatment with 5-fluorouracil 

by a mechanism involving redistribution of ENT1to the 

plasma membrane [81]. 

In a study specifically designed to investigate roles of 

human nucleoside transporters in uptake of FLT [82], 

binding of FLT to transporters was initially monitored by 

its inhibitory effects on [3H]uridine (1 M) uptake in yeast 

cells producing recombinant transporters.  The lowest FLT 

Ki value for inhibition of [3H]uridine uptake was produced 

by hCNT1, followed by hCNT3, hENT2, hENT1 and 

hCNT2.  Transport of [3H]FLT (20 M) into Xenopus 

laevis oocytes individually producing recombinant 

nucleoside transporters produced uptake values of 48 ± 8, 

32 ± 5, 12 ± 1, 11 ± 0.8 and 2.0 ± 0.2 pmol/oocyte/30 min 

for hCNT1, hCNT3, hENT2, hENT1 and hCNT2, 

respectively (Figure 5A).  Transport of [3H]FLT by hENT1, 

hENT2, hCNT1 and hCNT3 was concentration-dependent 

and conformed to Michaelis-Menten kinetics (Figure 5B).  

hENT1 and hENT2 produced higher transport capacities 

and lower apparent affinities than hCNT1 and hCNT3.  The 

transport efficiency (Vmax/Km) was approximately 6-fold 

greater for hCNT1 and hCNT3 than for hENT1 and hENT2, 

suggesting that hCNT1 and hCNT3 transport [3H]FLT more 

efficiently than hENT1 and hENT2 at lower (micromolar) 

concentrations [82].  [3H]FLT uptake in six different cancer 

cell lines was inhibited at least 50% by the hENT1 inhibitor 

nitrobenzylmercaptopurine ribonucleoside (NBMPR) and, 

according to real-time polymerase chain reactions, hENT1 

and hENT2 had the most abundant nucleoside transporter 

transcripts in all cell lines.  Further binding assays 

demonstrated a strong correlation between extracellular 

NBMPR binding sites/cell and [3H]FLT uptake for all but 

one of the cell lines, consistent with plasma membrane 

nucleoside transporters (especially hENT1) having 

important roles in cellular FLT uptake [82]. 

 

 
Figure 4. [18F]FLT PET imaging of thymidylate synthase inhibition in 

tumours. Typical 0.5-mm transverse [18F]FLT PET slices through the 

thoracic region at the level of the maximum tumour diameter of a RIF-1 

tumour-bearing mouse treated with PBS (control; A) and a RIF-1 tumour-

bearing mouse treated with 5-fluorouracil (B).  Arrows = tumour. C. 

Summary of [18F]FLT kinetics in control (•) and 5-fluorouracil-treated (○) 
RIF-1 tumours.  Tumour-bearing mice were treated with PBS or 5-

fluorouracil at a dose of 165 mg/kg i.p. and scanned at 1 to 2 hours after 

injection.  For each mouse, tumour/heart radioactivity ratios from five 

slices were averaged at each of the 19 time points.  Data points represent 

mean tumour/heart ratios from eight control mice and five 5-fluorouracil-

treated mice; error bars represent standard errors.  This figure was 

reproduced with permission from Perumal et al. (2006) [81]; copyright © 

2006 by American Association for Cancer Research. 

 

A subsequent study investigated the importance of 

ENT1 for [18F]FLT uptake in normal tissues and tumours 

[83].  ENT1-knockout (ENT1(-/-)) mice were compared 

with wild-type (ENT1(+/+)) mice using small-animal 

[18F]FLT PET in absence and presence of NBMPR-

phosphate (Figure 6).  Compared with noninjected 

ENT1(+/+) mice, ENT1(+/+) mice injected with NBMPR-P 

and ENT1(-/-) mice displayed a reduced percentage 

injected dose per gram (%ID/g) for [18F]FLT in the blood 

(84% and 81%, respectively) and an increased %ID/g for 

[18F]FLT in the spleen (188% and 469%, respectively) and 

bone marrow (266% and 453%, respectively).  Plasma
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Figure 5. Uptake of FLT by human nucleoside transporters.  A. Uptake of [3H]thymidine  and [3H]FLT (20 M) in Xenopus laevis oocytes producing 

different recombinant human nucleoside transport proteins.  B. Concentration-dependent influx of [3H]FLT in oocytes producing human nucleoside transport 

proteins with inset kinetic parameters.  All experiments were performed with 12 oocytes per group and data are expressed as mean S.E.M.  Error bars are not 

shown if the S.E.M. values were smaller than the size of the symbol.  Values are for mediated uptake (uptake in RNA transcript-injected oocytes minus uptake in 

control oocytes injected with water alone).  Pictures were reproduced with permission from Paproski et al. (2008) [82]; copyright © 2008 by American Society 

for Pharmacology and Experimental Therapeutics. 

 
 

Figure 6. Role of ENT1 in cellular uptake of [18F]FLT. [18F]FLT PET 

maximum-intensity-projection images of noninjected ENT1+/+ mice, 

ENT1+/+ mice injected with 15 mg of NBMPR-P per kg at 1 hour before 

imaging, and ENT1−/− mice.  Images were summations of radioactivity 
over 10 minutes from approximately 50 to 60 minutes after radiotracer 

injection.  This figure was reproduced with permission from Paproski et al. 

(2010) [83]; copyright © 2010 by Society of Nuclear Medicine. 

 

thymidine levels were 1.65-fold higher in ENT1(-/-) mice 

than in ENT1(+/+) mice, whilst spleen tissue from 

ENT1(+/+) and ENT1(-/-) mice showed similar TK1 

protein levels and significant staining of CNT1 and CNT3 

[83].  Human lung carcinoma cells transfected with 

pSUPER-producing short-hairpin RNA against hENT1 

(A549-pSUPER-hENT1) displayed 0.45-fold hENT1 

transcript levels and 0.68-fold [3H]FLT uptake compared 

with cells transfected with a scrambled sequence with no 

homology to mammalian genes (A549-pSUPER-SC).  

Compared with A549-pSUPER-SC xenograft tumors, 

A549-pSUPER-hENT1 xenograft tumors displayed 0.76-

fold %ID/g values (ex vivo gamma-counts) and 0.65-fold 

maximum SUV (PET image analysis) for [18F]FLT uptake 

at 1 h after tracer injection.  Because loss of ENT1 activity 

significantly affected [18F]FLT biodistribution in mice and 

[18F]FLT uptake in xenograft tumors, it was concluded that 

ENT1 is an important mediator of [18F]FLT uptake in 

normal tissues and tumours [83]. 

A parallel study was performed to determine if FLT 

uptake is a predictor of gemcitabine uptake and/or toxicity 

in a panel of six different human pancreatic cancer cell lines 

(Capan-2, AsPC-1, BxPC-3, PL45, MIA PaCa-2 and 

PANC-1) [84].  Capan-2 cells displayed the lowest levels of 

extracellular NBMPR binding, FLT and gemcitabine uptake 

during short (1-45 seconds) and prolonged (1 hour) periods, 

and gemcitabine sensitivity.  Exposure to NBMPR (inhibits 

only hENT1) or dilazep (inhibits hENT1 and hENT2) 

reduced FLT and gemcitabine uptake and gemcitabine 

sensitivity, with dilazep having greater effects than 

NBMPR.  Gemcitabine permeation was primarily mediated 

by hENT1, and to a lesser extent by hENT2, whilst FLT 

permeation included a substantial component of passive 

diffusion [84].  In five out of six cell lines, correlations 

were observed between FLT and gemcitabine initial rates of 

uptake, gemcitabine uptake and gemcitabine toxicity, FLT 

uptake and gemcitabine toxicity, and ribonucleotide 

reductase subunit M1 expression and gemcitabine toxicity. 

Uptakes of FLT and gemcitabine were comparable for 

predicting gemcitabine toxicity in the tested pancreatic 

cancer cell lines, it was therefore concluded that [18F]FLT 

may provide clinically useful information about tumour 

gemcitabine transport capacity and sensitivity [84]. 

In a study investigating the correlation of [18F]FLT 

uptake with mRNA expressions of hENT1 and TK1 in 

tissue samples from newly diagnosed gastrointestinal 

cancers, of all lesions tested only one gastric cancer showed 

focally increased uptake of [18F]FLT.  The mean [18F]FLT 

SUV in gastrointestinal cancer was 5.48 ± 1.87.  No 

significant correlation was observed between [18F]FLT 

SUV and hENT1 mRNA expression (P = 0.90), whilst there 

was a significant correlation between [18F]FLT SUV and 

TK1 mRNA expression (P <0.05) [85]. 

Km = 3.4 ± 0.2 mM

Vmax = 169 ± 4 pmol/oocyte/min

Vmax/Km = 50 pmol/oocyte/min/mM

Km = 2.6 ± 0.4 mM

Vmax = 180 ± 13 pmol/oocyte/min

Vmax/Km = 69 pmol/oocyte/min/mM

Km = 0.13 ± 0.01 mM

Vmax = 52 ± 1 pmol/oocyte/min

Vmax/Km = 400 pmol/oocyte/min/mM

Km = 0.11 ± 0.01 mM

Vmax = 37 ± 1 pmol/oocyte/min

Vmax/Km = 340 pmol/oocyte/min/mM
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Isolated human B-lymphobast cells, either proficient or 

deficient in TK1, were studied to show how metabolism 

and nucleoside transport influence uptake and retention of 

FLT [86].  Both influx and efflux of FLT were measured 

under conditions where concentrative and equilibrative 

transport could be distinguished.  Whilst initial rates of FLT 

uptake were a function of both concentrative and 

equilibrative transporters, concentrative FLT transport 

dominated over equilibrative transport.  Inhibition of 

hENT1 reduced FLT uptake, but there were no correlations 

between clonal variations in hENT1 levels and FLT uptake.  

TK1 was mandatory for the cellular concentration of FLT 

and uptake peaked after 60 minutes of incubation with FLT, 

followed by a decline in intracellular levels of FLT and its 

metbolites.  Efflux was rapid and was associated with 

reductions in FLT and its metabolites [86]. 

In a study examining the extent to which ENT1 levels 

vary in a proliferation-dependent manner in human A549 

tumor cells grown as tumor xenografts in nude mice, 

[18F]FLT uptake was measured in vivo using small animal 

PET and further examined ex vivo using autoradiography 

[87].  [18F]FLT uptake patterns were also compared to 

immunohistochemical analysis of ENT1 and the 

proliferation markers Ki67 and BrdU.  ENT1 levels were 

approximately twice as high in actively proliferating 

regions of tumours grown in vivo.  Proliferating regions 

showed increased [18F]FLT uptake compared with 

nonproliferating tumour regions, hence confirming the role 

of hENT1 in [18F]FLT uptake and strengthening the case for 

using  [18F]FLT as a tracer for both cell proliferation and 

relative ENT1 levels [87]. 

A later study investigated whether uptake of [18F]FLT 

in newly diagnosed gliomas correlates with ENT1 mRNA 

expression, microvascular density (assessed by CD34 

immunohistochemistry) and blood-brain barrier 

permeability [88].  In tumour lesions identified by increased 

[18F]FLT uptake, dynamic analysis revealed correlations 

between the phosphorylation rate constant k3 and ENT1 

expression, but there was no correlation between the kinetic 

parameters and CD34 score.  Good correlation was 

observed between the gadolinium (Gd) enhancement score 

(evaluating blood-brain barrier breakdown) and ENT1 

expression, CD34 score and Ki-67 index.  It was therefore 

concluded that ENT1 expression might not reflect 

accumulation of [18F]FLT in vivo due to blood-brain barrier 

permeability in glioma [88]. 

TAS-102 is a recently developed orally administered 

combination chemotherapy drug composed of α,α,α-

trifluorothymidine (TFT) and a thymidine phosphorylase 

inhibitor (tipiracil hydrochloride, TPI) in a 1:0.5 ratio.  

TAS-102 has especially been targeted at metastatic 

colorectal cancer [89-94].  In the mechanism of action of 

TAS-102, TFT is intracellularly phosphorylated and then 

incorporated into DNA, which leads to DNA damage and 

cell cycle arrest.  TPI is an inhibitor of thymidine 

phosphorylase that metabolises TFT, therefore increasing 

the bioavailability of TFT, and TPI is also an inhibitor of 

angiogenesis.  hCNT1 has a major role in intestinal 

absorption of TFT and, when expressed in Xenopus laevis 

oocytes, uptake of TFT by hCNT1 has Km and Vmax values 

of 69.0 μM and 516 pmol/oocyte/30 min, respectively [95].  

In human colon cancer xenografts in mice, administration 

of TAS-102 imparted a decrease in cell viability and an 

increase in [18F]FLT uptake.  Early after TAS-102 

administration there may be decreased dephosphorylation 

of [18F]FLT and, at a later time, increased TK1 expression 

and/or nucleoside transporter activity may be related to 

increased [18F]FLT uptake.  Hence, [18F]FLT PET is 

potentially useful for assessing the pharmacodynamics of 

TAS-102 in cancer patients [96]. 

 

4. CONCLUSIONS 

The nucleoside analogue [18F]FLT is emerging as a feasible 

radiotracer for routine PET imaging, especially in the 

detection and monitoring of cancers.  The important 

advantage of [18F]FLT is that it suffers from a lower non-

specific background uptake than the established and widely 

used radiotracer [18F]FDG.  Practicable and automated 

chemical syntheses of [18F]FLT have been developed, for 

which the most widely used radiolabelling precursor is the 

thymidine derivative 3-N-boc-5ꞌ-O-dimethoxytrityl-3ꞌ-O-

nosyl-thymidine.  [18F]FLT enters proliferating cells 

through nucleoside transporters, which are also routes of 

entry into cells for anti-cancer and anti-viral nucleoside 

analogue drugs.  The roles of nucleoside transporters, 

especially ENT1, in the cellular uptake of [18F]FLT have 

been investigated.  Further studies on structure-activity 

relationships and regulation of nucleoside transporters are 

necessary for improving the design and delivery of 

nucleoside analogue drugs and for ongoing developments in 

PET imaging of cancers and other diseases.  
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