A Guide to the Ionising Radiations Regulations 2017
The Ionising Radiations Regulations 2017 mandate strict controls to protect workers and the public from ionising radiation risks.
A Guide to the Ionising Radiations Regulations 2017 Read Post »
Dosimetry is a term used in radiation protection and health physics. It involves measuring the ionizing radiation dose absorbed by an object. However, when dosimetry is applied to the human body, it is usually concerned with the internal ingestion or inhalation of radioactive substances and externally with the irradiation by sources of radiation. Therefore, dosimetry estimates the radiation of absorbed doses to individual organs and the tumour site.
These dosimetry calculations regarding the radiation dose subjected to organs and surrounding tissue help to determine whether a patient can be treated safely. It also enables the estimation of dose to tumours and contributes to predicting the therapeutic value of radioimmunotherapy. The initial clinical development of the Zevalin procedure can demonstrate this. During this clinical trial, radiation dosimetry was performed at the investigative site for 205 patients prior to treatment with yttrium-90 radiolabelled Zevalin. First, the radiation absorbed dose was estimated following imaging with indium-111 (electron capture, half-life of 2.8 days) in order to decide to proceed with yttrium-90 radiolabelled Zevalin treatment.
MIRDOSE computer software was used to estimate the radiation dose by applying quantitative imaging and blood sampling data. All 205 patients met protocol-defined criteria for proceeding with yttrium-90 radiolabelled Zevalin treatment. The estimated radiation absorbed doses were below the maximum of 2000 cGy for normal organs and 300 cGy for red marrow (myeloid tissue).
Therefore, dosimetry relates the administered amount of radioactivity to the absorbed radiation dose in organs, tumours and the whole body. Sometimes, the radiation dose calculated for targeted alpha radiotherapy (TaRT) is less accurate than for external beam radiation therapy (EBRT). This is because of the limited radiation dose input data, inhomogeneous dose distributions and the rationale behind the estimation of the TaRT absorbed doses.
These radiation dose calculations are more complicated for internally distributed radionuclides than external beam irradiation. The alpha particle dosimetry component of the calculation adds to the complication of the decay cascade due to the daughter products that may have a different distribution of the parent radionuclide.
You are here:
home » .
The Ionising Radiations Regulations 2017 mandate strict controls to protect workers and the public from ionising radiation risks.
A Guide to the Ionising Radiations Regulations 2017 Read Post »
Dosimetry measures radiation dose, ensuring safety in radiological protection, nuclear medicine, and occupational environments through calculations.
Dosimetry: Calculating Radiation Dose for Medical Applications Read Post »
Iodine-131 sodium iodide, a radioactive isotope, is used in diagnosing and treating thyroid disorders and specific cancer therapies.
Iodine-131 Sodium Iodide: Thyroid Disorder Diagnosis and Treatment Read Post »
Iodine-131 human serum albumin offers versatile diagnostic and therapeutic applications, despite limitations like radiation exposure and a short half-life.
Iodine-125 iothalamate, with high albumin affinity, ensures accurate GFR measurement, minimal radiation exposure, stability, and cost-effectiveness in diagnostics.
Iodine-125 Iothalamate: Diagnostic Imaging and Renal Function Read Post »
Gallium-68 DOTATOC revolutionises neuroendocrine tumor diagnosis, enhancing PET imaging accuracy, sensitivity, and management in the medical field.
Gallium-68 DOTATOC: PET Imaging of Neuroendocrine Tumour Read Post »
Calibration of a SPECT-CT scanner for activity quantification in technetium-99m macroaggregates.
SPECT/CT activity quantification in 99mTc-MAA acquisitions Read Post »
The role of FDG-PET/CT in radiotherapy treatment of head and neck diseases.
Topics on nano-particles, glucose transporter, nitroimidazole and microsphere therapy.
Editorial review 2015-nuclear medicine, diagnostic imaging and therapy Read Post »
Yttrium-90 radioembolization is a well-established therapy for the treatment of hepatocellular carcinoma.