Radiopharmaceuticals

Radiopharmaceuticals can be divided into radioactive molecules or radionuclides that facilitate diagnostic imaging and radiotherapy. Before being used in the clinical setting, all commercially produced radiopharmaceuticals must be approved by the US Food and Drug Administration (FDA).

Also, radiopharmaceuticals must possess various characteristics to be desirable for nuclear medicine applications. Radionuclide decay should be able to produce gamma emissions of suitable energy for diagnostic imaging. The ideal energy for a gamma camera is 100-200 keV, compared to 511 keV for positron emission tomography imaging.

Radiopharmaceuticals should not contain particle radiation, such as beta emissions, which can contribute to the patient’s radiation doses, even though beta emissions have therapeutic properties.

Furthermore, radionuclides should have an effective half-life for clinical applications. They should also be carrier-free and not contaminated with a stable radionuclide. If the specific activity changes, this can harm biodistribution and labelling efficiency.

Considering all the above, one of the best radionuclides for radiopharmaceuticals is technetium-99m, especially for gamma camera imaging. The radiopharmaceutical should rapidly localise in a specific part of the body according to the intended application. Background clearance should also be rapid to achieve reasonable target-to-background ratios.

Radiotherapy treatments involving the radionuclide attached to a vector (antibody) to deliver radioactivity to specific cells are called radioimmunotherapy. 

For example, the radiopharmaceutical iodine-131 tositumomab, yttrium-90 ibritumomab and yttrium-90 epratuzumab are used to treat non-Hodgkin’s lymphoma.

Also, samarium-153 (Quadramet) is effective in relieving the pain of bone cancer and prostate and breast cancer.  The most used radioisotope for treating bone metastasis in the US is samarium-153 EDTMP (lexidronam).

The pure beta emitter yttrium-90 is used to relieve the pain of arthritis in larger synovial joints. Other radiopharmaceuticals include Iofetamine (I-123 iodoamphetamine), used for non-invasive evaluation of local cerebral blood flow in cerebrovascular accidents, and dysprosium, used as an aggregated hydroxide for synovectomy (removal of synovial tissue surrounding a joint ) treatment of arthritis.

You are here:
home » radiopharmaceuticals

Radiotheranostic treatments provide targeted, personalised cancer diagnosis and therapy
Radiotheranostics

Radiotheranostic Treatments: A Guide to Types and Their Clinical Applications

Radiotheranostic treatments combine diagnostic imaging with targeted radiopharmaceutical therapy, providing personalised cancer care with enhanced precision and effectiveness.

Radiotheranostic Treatments: A Guide to Types and Their Clinical Applications Read Post »

brain scan using Pittsburgh Compound-B (PIB) PET imaging, highlighting amyloid plaques as bright spots within the brain
Nuclear Medicine Imaging

The Discovery and Development of Pittsburgh Compound-B (PIB): A Breakthrough in Alzheimer’s Disease Research

Pittsburgh Compound-B allows researchers to visualise amyloid plaques in the brain, aiding in Alzheimer’s disease diagnosis and study.

The Discovery and Development of Pittsburgh Compound-B (PIB): A Breakthrough in Alzheimer’s Disease Research Read Post »

Therapeutic Nuclear Medicine for Advanced Cancer Treatment
Radiotherapeutics

Therapeutic Nuclear Medicine for Advanced Cancer Treatment – Opportunities and Challenges

Therapeutic nuclear medicine leverages radionuclides for targeted cancer treatment, facing challenges in delivery, safety, and regulatory compliance.

Therapeutic Nuclear Medicine for Advanced Cancer Treatment – Opportunities and Challenges Read Post »

radiopharmaceutical market in Brazil
Medical Imaging Topics

Advancing Healthcare: The Dynamic Growth of Brazil’s Radiopharmaceutical Market

In Brazil, the growing radiopharmaceutical market, driven by chronic disease and advanced imaging technologies, is becoming increasingly significant in healthcare.

Advancing Healthcare: The Dynamic Growth of Brazil’s Radiopharmaceutical Market Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Yttrium-90 Ibritumomab Tiuxetan (Zevalin): A Targeted Radioimmunotherapy Revolutionising the Treatment of Refractory B-Cell Non-Hodgkin’s Lymphoma

Zevalin, combining monoclonal antibodies and radiation, offers hope against refractory B-cell non-Hodgkin’s lymphoma with targeted therapy.

Yttrium-90 Ibritumomab Tiuxetan (Zevalin): A Targeted Radioimmunotherapy Revolutionising the Treatment of Refractory B-Cell Non-Hodgkin’s Lymphoma Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Thallium-201 Chloride in Nuclear Cardiology: Applications and Insights in Myocardial Perfusion Imaging and Beyond

Thallium-201 chloride is pivotal in myocardial perfusion imaging, diagnosing ischemic heart disease, and assessing myocardial viability.

Thallium-201 Chloride in Nuclear Cardiology: Applications and Insights in Myocardial Perfusion Imaging and Beyond Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Utilising Technetium-99m Labelled Red Blood Cells (UltraTag) in Blood Pool Imaging and the Detection of Gastrointestinal Bleeding

Technetium-99m UltraTag RBCs enhance blood pool imaging and precisely localize gastrointestinal bleeding in non-invasive diagnostic procedures.

Utilising Technetium-99m Labelled Red Blood Cells (UltraTag) in Blood Pool Imaging and the Detection of Gastrointestinal Bleeding Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Technetium-99m Mebrofenin (Choletec): Insights into Its Role as a Hepatobiliary Imaging Agent

Technetium-99m Mebrofenin is pivotal for hepatobiliary imaging, assessing liver function, gallbladder diseases, and biliary obstructions.

Technetium-99m Mebrofenin (Choletec): Insights into Its Role as a Hepatobiliary Imaging Agent Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Lutetium-177 Dotatate: A Novel Therapeutic Approach in Neuroendocrine Tumours

Lutetium-177 Dotatate selectively binds to SSTRs on NET cells, delivering targeted radiation, minimizing collateral damage, and reducing side effects.

Lutetium-177 Dotatate: A Novel Therapeutic Approach in Neuroendocrine Tumours Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Iodine-131 Iobenguane (I-131 MIBG): A Radiopharmaceutical Powerhouse for Diagnosing and Treating Neuroendocrine Tumours

Iodine-131 Iobenguane (I-131 MIBG), a radiopharmaceutical agent, enables early diagnosis and targeted treatment of neuroendocrine tumours, improving patient outcomes.

Iodine-131 Iobenguane (I-131 MIBG): A Radiopharmaceutical Powerhouse for Diagnosing and Treating Neuroendocrine Tumours Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Iodine-131 Human Serum Albumin: Versatile Applications and Challenges in Diagnostic and Therapeutic Medicine

Iodine-131 human serum albumin offers versatile diagnostic and therapeutic applications, despite limitations like radiation exposure and a short half-life.

Iodine-131 Human Serum Albumin: Versatile Applications and Challenges in Diagnostic and Therapeutic Medicine Read Post »

Alzheimer's disease, a progressive neurological disorder, destroys memory and cognitive abilities, causing confusion, disorientation, and eventually, complete dependence on caregivers.
Medical Imaging Topics

Brain Imaging in Alzheimer’s Disease: Techniques, Advancements, and Challenges

Alzheimer’s disease, an age-related neurodegenerative disorder, impacts brain structure and function, requiring advanced imaging techniques for improved understanding and diagnosis.

Brain Imaging in Alzheimer’s Disease: Techniques, Advancements, and Challenges Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Gallium-68 DOTATATE: A Novel Diagnostic Tool for Neuroendocrine Tumours

Gallium-68 DOTATATE, a radiopharmaceutical, targets somatostatin receptors, aiding neuroendocrine tumor detection through PET imaging, enhancing diagnostic accuracy and patient outcomes.

Gallium-68 DOTATATE: A Novel Diagnostic Tool for Neuroendocrine Tumours Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Fluorine-18 Flutemetamol: An Imaging Agent Revolutionising Alzheimer’s Disease Diagnosis

Fluorine-18 Flutemetamol, a radioactive tracer, for early detection of Alzheimer’s disease through PET imaging, enhancing diagnostic accuracy.

Fluorine-18 Flutemetamol: An Imaging Agent Revolutionising Alzheimer’s Disease Diagnosis Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Fluorine-18 Fludeoxyglucose: A Key Radiotracer in Positron Emission Tomography

Fluorine-18 Fludeoxyglucose, a radiotracer used in PET scans, enables precise cancer diagnosis, evaluating metabolic activity, and monitoring treatment efficacy non-invasively.

Fluorine-18 Fludeoxyglucose: A Key Radiotracer in Positron Emission Tomography Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Fluorine-18 Flucicovine (Axumin) PET Imaging: A Game Changer in Prostate Cancer Detection and Management

Fluorine-18 Flucicovine (Axumin) improves prostate cancer detection, enabling accurate diagnosis and targeted treatments with PET imaging.

Fluorine-18 Flucicovine (Axumin) PET Imaging: A Game Changer in Prostate Cancer Detection and Management Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Fluorine-18 Florbetapir: An Essential Tool for Diagnosing Alzheimer’s Disease

Fluorine-18 Florbetapir, radiotracer, amyloid plaques, Alzheimer’s disease, PET imaging, early diagnosis, pharmaceutical research, neurodegenerative disorders, brain.

Fluorine-18 Florbetapir: An Essential Tool for Diagnosing Alzheimer’s Disease Read Post »

FDA-approved radiopharmaceuticals revolutionise diagnostics and targeted therapies, enhancing accuracy and effectiveness in disease detection and treatment.
FDA-Approved Radiopharmaceuticals

Copper-64 DOTATE: A Promising Radiopharmaceutical in Diagnostic Imaging and Targeted Therapy

Copper-64 DOTATE, a diagnostic radiopharmaceutical, effectively targets neuroendocrine tumours, enabling precise imaging and personalised treatment plans for cancer patients.

Copper-64 DOTATE: A Promising Radiopharmaceutical in Diagnostic Imaging and Targeted Therapy Read Post »

Scroll to Top